
Transformation of a
Monolithic Architecture
into a Highly Scalable

Microservices Cloud Architecture
Based on an Existing .NET Application

Dominik Zöchbauer

MAS TERA RBE I T

eingereicht am

Fachhochschul-Masterstudiengang

Software Engineering

in Hagenberg

im Dezember 2019

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, December 19, 2019

Dominik Zöchbauer

i

Contents

Declaration i

Abstract vi

Kurzfassung vii

1 Introduction 1

1.1 Goal and approach to a solution 2

1.2 Structure . 2

I Transformation 4

2 .NET 5

2.1 .NET Framework . 5

2.2 .NET Core . 6

2.3 .NET Standard . 7

3 Monolithic Architecture 9

3.1 Characteristics . 9

3.2 Shortcomings and reasons for transformation 10

ii

Contents iii

4 Microservices Architecture 12

4.1 Characteristics and principles 12

4.2 Modular design . 14

4.2.1 Loose coupling and high cohesion 14

4.2.2 Bounded context . 14

4.3 Data persistence . 15

4.4 Integration and communication 16

4.4.1 Types of communication 16

4.4.2 Fault tolerance . 19

4.4.3 Versioning . 22

4.4.4 Exposing services to external clients 23

4.5 Eventual Consistency . 24

4.6 Advantages and disadvantages 25

4.6.1 Advantages . 25

4.6.2 Disadvantages . 28

5 Splitting a Monolithic Application 31

5.1 allReady – an open source monolith 31

5.2 Solution architecture . 32

5.3 An incremental approach for splitting the monolith 32

5.3.1 Identity service . 33

5.3.2 A common API service for all clients 38

5.3.3 Migrating the notifications worker service 41

5.4 Discussion . 42

Contents iv

II Operations 45

6 Running Containerized Microservices in the Cloud 46

6.1 Introduction to container orchestration 47

6.2 Requirements and design decisions 49

6.2.1 Requirements on the orchestration level 50

6.2.2 Requirements on the application level 51

7 Comparison of Azure Kubernetes Service and Service Fabric 53

7.1 Criteria . 53

7.2 Azure Kubernetes Service . 54

7.2.1 Cluster architecture 54

7.2.2 Platform model . 56

7.3 Azure Service Fabric . 58

7.3.1 Cluster architecture 59

7.3.2 Platform model . 61

7.3.3 Differences between Linux and Windows clusters . . . 63

7.4 Cluster state management and scheduling 66

7.4.1 Azure Kubernetes Service 67

7.4.2 Service Fabric . 70

7.5 Providing high availability and fault tolerance 75

7.5.1 Azure Kubernetes Service 76

7.5.2 Service Fabric . 78

7.6 Ensuring security . 80

7.6.1 Azure Kubernetes Service 80

7.6.2 Service Fabric . 82

Contents v

7.7 Simplifying networking . 83

7.7.1 Azure Kubernetes Service 84

7.7.2 Service Fabric . 84

7.8 Enabling service discovery . 85

7.8.1 Azure Kubernetes Service 85

7.8.2 Service Fabric . 87

7.9 Enabling continuous deployment 95

7.9.1 Azure Kubernetes Service 96

7.9.2 Service Fabric . 98

7.10 Load testing . 100

7.10.1 Response time . 102

7.10.2 Throughput of successful responses 103

7.10.3 Error rate . 104

8 Closing Remarks 107

References 109

Abstract

Existing web applications are often implemented following a monolithic ap-
proach. A fast growing code base continuously introduces greater complexity
and will eventually reveal the technical and organizational limitations of a
monolithic application. A solution to overcome these limitations is the trans-
formation into a microservices architecture.

In a first step, this theses gives an overview of advantages and disadvantages
of the microservices pattern and helps to decide whether a transformation
from a monolithic to a microservices architecture is worthwhile or profitable.
Based on an open source application implemented in .NET that serves as an
example, an incremental approach for splitting a monolith into microservices
is demonstrated and evaluated. Concluding, benefits and drawbacks of a
microservices architecture are identified.

Furthermore, the created microservices are containerized using Docker. By
utilizing container orchestration platforms, the microservices application is
deployed onto cloud infrastructure. The available orchestration platforms in
Azure are Azure Kubernetes Services (AKS), Service Fabric on Linux and
Service Fabric on Windows. The evaluation of these platforms with regard
to their functionality as well as performance shows that the Service Fab-
ric platform is lacking mechanisms for full encapsulation and only provides
basic functionality for container management. However, under high load,
a Windows-based Service Fabric cluster performs significantly better than
AKS and Linux-based Service Fabric.

vi

Kurzfassung

Bestehende Implementierungen von Webanwendungen folgen oft einem mo-
nolithischen Ansatz. Eine schnell wachsende Codebasis bringt auch eine kon-
tinuierlich steigende Komplexität mit sich und wird früher oder später die
technischen sowie organisatorischen Einschränkungen einer monolithischen
Anwendung aufzeigen. Eine Lösung zur Überwindung dieser Einschränkun-
gen ist die Transformation in eine Microservices-Architektur.

Diese Arbeit gibt im ersten Schritt einen Überblick über die Vor- und
Nachteile des Microservices-Patterns und bietet eine grundlegende Entschei-
dungshilfe bei der Frage, ob eine Transformation von einer monolithischen
zu einer Microservices-Architektur einen Mehrwert bringt. Anhand einer
beispielhaften Open-Source-Anwendung, die auf .NET basierend implemen-
tiert ist, wird ein inkrementeller Ansatz zur Zerlegung eines Monolithen in
Microservices demonstriert und bewertet. Abschließend werden Vor- und
Nachteile einer Microservices-Architektur herausgearbeitet.

Weiters werden die erstellten Microservices mittels Docker als Container be-
reitgestellt. Unter Verwendung von Container-Orchestrierungsplattformen
wird die Microservices-Anwendung auf Cloud-Infrastruktur bereitgestellt.
Die in Azure verfügbaren Orchestrierungsplattformen sind Azure Kuberne-
tes Services (AKS), Service Fabric auf Linux und Service Fabric auf Win-
dows. Die Evaluierung dieser Plattformen hinsichtlich ihrer Funktionalität
und Performance zeigt, dass Service Fabric keine adequaten Mechanismen
bereitstellt, um eine vollständige Kapselung von Bereichen oder Komponen-
ten zu ermöglichen. Darüber hinaus bietet Service Fabric nur Basisfunk-
tionalitäten für die Verwaltung von Containern. Unter hoher Last bietet
ein Windows-basierter Service-Fabric-Cluster jedoch eine erheblich bessere
Leistung als ein AKS-Cluster bzw. Linux-basierter Service-Fabric-Cluster.

vii

Chapter 1

Introduction

As web applications grow in size and complexity, scaling these applications
becomes more important. Reasons for this growing complexity of web appli-
cations could be an increasing customer or user base. This leads to a higher
load of requests an application receives. To deal with such a high load, there
are two approaches to scale an application: scaling up and scaling out –
these are also known as vertical and horizontal scaling respectively. Scaling
up basically means to add more resources to a server that will eventually
reach an upper limit. In contrast, scaling out means to replicate the server
and run these replications in parallel. Since there is no hardware limitation
with this approach, it should be preferred in the long run.

An architectural pattern that fits the scale out strategy is microservices:
many small services where each one of them covers a certain aspect of the
application. Individual services can now be scaled on their own, indepen-
dently from other services. In recent years, it became very popular to run
microservices architectures in the cloud, because it simplifies the process of
provisioning servers.

To scale well, infrastructure-as-code is an essential factor. This declarative
approach allows to define the entire runtime environment in code. Therefore,
infrastructure provisioning can be automated. This is necessary since cloud
applications often consist of many services running on a large number of
machines [Cit+15].

The development of new applications commonly starts as a monolithic ar-
chitecture where a single service contains the entire business functionality.
With this approach, scaling is only possible vertically. In order to allow for

1

1. Introduction 2

horizontal scaling, a transformation of the monolith into a microservices
architecture is needed.

1.1 Goal and approach to a solution

This exploratory study should show which approaches are possible to trans-
form an existing application into the cloud. The solution will build on
Docker, a technology to perform lightweight container virtualization, en-
abling a decoupling between application code and infrastructure. The study
should give recommendations on how to split up the monolithic architec-
ture. Moreover, it should point out advantages and disadvantages of specific
technologies and cloud platforms. Since there is a broad spectrum of existing
technologies, the focus will be on technologies provided by Microsoft with
the Azure cloud platform.

One goal is to automate operations to the greatest possible extent without
giving up control of the infrastructure. Additionally, vendor lock-in should be
avoided or, if not possible, at least kept to a minimum. Microsoft offers two
mature platforms that facilitate the operations of microservice architectures
in the Azure cloud: Azure Kubernetes Services and Service Fabric. Both are
platforms that manage the deployment and execution of containers. Impor-
tant factors when dealing with large complex applications are availability,
scaling and networking. Azure Kubernetes Services and Service Fabric are
evaluated and compared in detail according to predefined criteria.

1.2 Structure

This thesis is comprised of two major parts, each grouping multiple chapters.
Part I explains the transition from a monolith to microservices and is divided
into the following chapters:

• Chapter 2 explains the basics of the .NET ecosystem and elaborates
the fundamental differences between .NET Framework and .NET Core.

• Chapter 3 discusses the shortcomings of a monolithic architecture and
gives reason for a transformation.

• Chapter 4 gives an introduction to the principles of microservices.
Furthermore, it evaluates advantages and disadvantages of this archi-
tectural pattern.

1. Introduction 3

• Chapter 5 presents an incremental approach on how a monolithic ap-
plication can be split into microservices.

Part II of this thesis discusses how the microservices created in the first part
can be operated in a cloud environment. This part consists of the following
chapters:

• Chapter 6 explains the key capabilities an orchestration platform has
to implement. Requirements on the orchestration and application level
are presented.

• Chapter 7 compares Azure Kubernetes Services and Service Fabric
based on the defined key capabilities.

• Chapter 8 reflects on the entire transition to cloud-based microservices
and gives a recommendation which orchestration platform to use.

Part I

Transformation

4

Chapter 2

.NET

This chapter briefly describes the two platforms offered by Microsoft for
the development of web applications. Theses platforms are the older .NET
Framework and the more recent .NET Core, which is available since June
2016 [Lan16]. For the development of web applications, Microsoft provides
the ASP.NET framework which is available for both platforms. Regardless
of the platform, ASP.NET enables the creation of at least two common
application types: MVC applications and REST APIs.

2.1 .NET Framework

The .NET Framework is a runtime execution environment for applications
and can be used in combination with various programming languages. It
consists of two main parts which are the Common Language Runtime (CLR)
and the .NET Framework class library that provides reusable functionality
to the developer [Micd].

The CLR manages code at execution time and provides core services for
managing memory, thread execution, code execution, code safety verifica-
tion and compilation [Mick]. Part of the CLR is the Common Type System
(CTS) which enables the execution of different programming languages on
the CLR. The compilation of these languages generates managed code that
confirms to the CTS. The generated managed code is then compiled at run-
time into native machine language by the CLR, which is called just-in-time
compilation. As a result, every language that runs on the CLR is able to use
the .NET Framework class library. A widely used language that targets the

5

2. .NET 6

CLR and is used for the prototypical implementation in this thesis is C#.

The .NET Framework class library is a collection of reusable types, that
can be utilized by the developer. The .NET Framework is only available on
Windows operating systems [Mich]. Therefore, it is not suitable for develop-
ment of cross-platform applications also running on Linux or other operating
systems.

ASP.NET is the web framework for the development of websites and web
applications in the .NET ecosystem and is based on the .NET Frame-
work. It provides components that facilitate the development of model-view-
controller applications and REST APIs. In order to run ASP.NET applica-
tions on Windows servers, Microsoft provides a feature-rich web server called
Internet Information Services (IIS).

2.2 .NET Core

.NET Core is a development platform and, opposed to the .NET frame-
work, allows the developer to target different operating systems without the
need for changes in the application. Currently .NET Core runs on Windows,
Linux and macOS and is focused on web applications and cloud workloads
[Micg]. Conceptually it is similar to the .NET Framework; .NET Core is
built upon its own CLR, which is adapted to the respective operating sys-
tems. Furthermore, it is open source and developed under the stewardship
of the .NET Foundation. The source code is available on GitHub1.

In comparison to the .NET Framework, which was a monolithic framework,
.NET Core has a modular structure. It is divided into smaller feature-centric
packages, leading to shorter release cycles. The NuGet package manager is
used to make these packages available.

To deploy an application developed with .NET Core there are two variants:
framework-dependent deployment and self-contained deployment. When us-
ing framework-dependent deployment, the .NET Core framework is installed
on the machine, which hosts the application. All apps deployed to this
machine use the same system-wide version. This approach could lead to
problems when updating the framework version. The second variant is self-
contained deployment where no global framework installation exists. Here
the framework is packaged and deployed with the application. This allows
updating the framework version for specific applications. The deployed .NET

1https://github.com/dotnet/core

https://github.com/dotnet/core

2. .NET 7

Core framework contains the binaries built for the specific platform the ap-
plication is deployed to. Therefore, the target platform has to be specified
when building the application. Because every application is running on its
own .NET Core framework, this increases the requirements for disk space
when multiple applications are deployed to the same machine [Micf].

Compared with the .NET Framework, .NET Core only contains a subset of
the .NET Framework functionality. In particular, only console applications
and ASP.NET web applications can be developed. Components for the de-
velopment of desktop clients, like WPF or WinForms, are not available for
.NET Core. Moreover, there is only a subset of the .NET Framework APIs
available, but with ongoing development, the number is growing. With .NET
Standard, described in Section 2.3, a specification has been created to ease
the development of third-party libraries targeting both, .NET Framework
and .NET Core.

Since .NET Core is focused on web and cloud applications, ASP.NET has
been rewritten based on .NET Core and is now called ASP.NET Core.
Whereas the classic ASP.NET, based on the .NET Framework, allows four
different programming models to create web applications – MVC, Web API,
Web Forms and Web Pages – ASP.NET Core only supports MVC and Web
API. ASP.NET Core offers a higher performance than ASP.NET [Micb].

Microsoft provides a cross-platform web server called Kestrel, which is in-
cluded by default in ASP.NET Core project templates. Configuring the
request pipeline is done using the integration of Kestrel in the ASP.NET
Core application. This decouples the application from the specific platform.
Furthermore, web servers like IIS, nginx or Apache can be used as a re-
verse proxy for preliminary handling of requests before forwarding them to
Kestrel [Mice].

2.3 .NET Standard

.NET Standard is a specification that represents which set of APIs a .NET
platform (e.g. .NET Framework or .NET Core) has to implement in order
to comply with this specification. Each incremented version number of the
.NET Standard specification means that a larger set of APIs is supported.

The specification mostly concerns developers of libraries, which can be used
by application developers. If the library targets a specific version of .NET
Standard, this library can be used on all platforms that support this specific

2. .NET 8

version. This solves the code sharing problem between platforms. A library
developer may want to target the lowest possible .NET Standard version, in
order to make the library available for as many platforms as possible [Mici].

Chapter 3

Monolithic Architecture

Before microservices have become popular as an architectural approach to
design applications, most web applications were developed in a monolithic
way. To decide whether a transformation from a monolithic to a microser-
vices architecture is necessary or profitable, it is essential to know about
the downsides and restrictions of a monolith. This chapter discusses the
characteristics and limitations of the monolithic architecture that led to the
emergence and popularity of microservices.

3.1 Characteristics

A web application following a monolithic architecture is built as a single and
self-contained unit. Common enterprise applications consist of three compo-
nents: A user interface built with HTML and JavaScript, a database which
mostly consists of a large number of tables and uses a relational schema, and
a server application between the user interface and the database. This server
application is the monolith and handles the receiving HTTP requests from
clients, generates HTML views that are sent back to the client in response,
executes business logic and interacts with the database to query or persists
data [LF14].

The monolithic server application is split into modules and services, but ev-
erything runs in the same process. Communication between these services is
performed directly, either via function calls or method invocations. There-
fore, the communication is fast, but has the disadvantage that services are
interdependent [LF14].

9

3. Monolithic Architecture 10

The deployment of a monolithic application is simple since there is only a
single deployable unit, which is the entire application [Ricb].

Horizontal scaling of a monolithic application is only possible by fully repli-
cating it multiple times – this requires the application to be stateless. A
server-side load balancer is used to equally distribute HTTP requests to the
replicated instances. As shown in Figure 3.1, all instances still access the
same database.

Client Load
Balancer

Client

Client

Monolith
Instance B

Service A
Service B

Service D
Service C

Monolith
Instance A

Service A
Service B

Service D
Service C

Monolith
Instance C

Service A
Service B

Service D
Service C

Database

Figure 3.1: Horizontal scaling of a monolithic architecture using three in-
stances of the application

3.2 Shortcomings and reasons for transformation

Although a monolithic architecture is not always bad, it has some char-
acteristics causing disadvantages, especially as the application grows. This
section discusses drawbacks resulting from this architectural design.

A common monolithic application is implemented using a single database to
persist data. As shown in Figure 3.1, scaling is possible by running multiple
instances of the application. As a result, handling a greater load of requests
is possible. However, the scalability is not optimal because with each created
instance of the monolith, resources for all services are allocated, although
only one service is affected by the load of requests [Dra+17].

Within a monolith, changes to the functionality result in a high cost for
quality assurance. Due to the high coupling of components, a single modifi-
cation might affect several features or components throughout the monolith.
In addition, manual verification by QA takes place before release when all

3. Monolithic Architecture 11

features are implemented and blocks the release until the whole verification
process is completed [GT17].

With a monolithic architecture, it is troublesome and error-prone to follow
the continuous deployment approach. Continuous deployment means with
each small, incremental change to the source code, a new version of the ap-
plication is deployed to the production environment. Since there is only a
single and self-contained deployable unit, the entire application has to be
redeployed. With every redeployment, all running tasks have to be stopped.
This creates a large surface for possible errors, and thus monolithic archi-
tectures are not well-suited for continuous delivery [Ricb].

As the monolithic application grows in size and complexity, it can get diffi-
cult for developers to understand the entire functionality of the application.
Especially if a new developer joins the team, it takes time to comprehend
the application. This causes the development progress to slow down. Fur-
thermore, it is not possible to have several teams working independently on
different business aspects of the application because the services are interde-
pendent and modules are coupled. As a result, changes require coordination
between teams [Ricb]. For instance, a slight change to the database schema
could affect all teams, requiring them to update their database queries. Drag-
oni et al. [Dra+17] also discuss the problem of dependencies: Adding or up-
dating them might cause compilation errors and also increase the possibility
of unintended application behavior. In 1982 Warner [War82] already iden-
tified the monolith’s interdependent nature as a problem: Changes to the
source code in one part of the application can result in errors in other parts.

Moreover, deployments can again lead to problems if teams do not coordi-
nate them: When two teams are working on two different features, they have
diverging code bases. Only one code base can be run on an environment at a
time. For example, if several teams intend to test their newly implemented
feature, they need to deploy it to the testing environment. Since only one
code base can be run concurrently, teams would block each other if they do
not coordinate their deployments [Wol16]. Alternatively, each team could
have its own testing environment, but this would result in higher resource
requirements and greater operational effort.

Following a monolithic approach also has effects on the technology stack.
When the entire application is implemented with a certain programming
language or framework, it is difficult to adopt new technologies. This can
be a problem if the fundamental platform or framework becomes obsolete
and will not receive updates anymore [Ric18]. Migrating the application to
another platform or framework can be tedious; and since the monolithic
application is a single unit, an incremental approach is often not possible.

Chapter 4

Microservices Architecture

The more an application grows in size, the more the shortcomings of a mono-
lithic architecture hinder development. The microservices architecture is a
pattern to create web applications in a way that mitigates the disadvantages
and limitations of a monolith and enables new benefits that facilitate the
operation of an application in the cloud. This chapter covers the character-
istics of a microservices architecture focusing on its development. The most
important aspects in applying this pattern are explained; in particular, the
prerequisites to successfully run a microservices application are addressed.

4.1 Characteristics and principles

Microservices is an architectural term that has no formal definition, but
is defined by its characteristics. This section, based on Newman [New15,
pp. 1 sqq.], reflects the key concepts of a microservices architecture.

Newman [New15, p. 2] defines microservices as follows: “Microservices are
small, autonomous services that work together.” When designing a mono-
lith, related code is grouped together to cope with the application’s com-
plexity, facilitating fast and frictionless development. Modules are used to
group the functionality and keep the codebase organized and manageable.
Microservices take this modular approach one step further; every module is
a separate service running independently of other services. Thus, each single
service covers a small part of the application’s functionality [New15, p. 2].
Of great importance is the isolation of each individual service that runs in
its own process and uses lightweight communication mechanisms [Fowb].

12

4. Microservices Architecture 13

This isolation enables the key characteristic of a microservices architecture
which is the autonomy of each service. Services can be changed and deployed
independently of each other without affecting other services. When changing
a service, consuming services must not be required to adapt to this change,
as this would mean a tight coupling between these services. To accomplish
this autonomy, services hide their internal implementations and only ex-
pose a defined API to be consumed by other services. If service A needs to
communicate with service B, it may only use the defined API of service B.
Since service A does only know about the defined API of service B, the in-
ternal implementation of service B can be changed and redeployed without
affecting service A [New15, p. 3]. In order to keep service internals hidden,
each service has its own data storage. Services are not allowed to directly
access the data storage owned by another service because this would result
in a coupling between the accessing service and the owning service’s domain
model. To acquire data owned by another service, the exposed API has to
be used [New15, pp. 39 sqq.]. In Section 4.4 inter-service communication is
covered in more detail.

Because each service runs in its own process, communication is done only via
network calls. This points out a disadvantage of a microservices architecture
because network calls are more expensive than in-process calls. To compen-
sate this, service APIs are designed more coarse-grained and aggregate data
from multiple in-process calls in one network call [Fowa]. Furthermore, refac-
torings involving multiple services are more difficult: Moving functionality
from one service to another requires more work than moving only inside a
process boundary, as it most likely requires changes to the exposed APIs. A
coarser-grained API makes this even more difficult [LF14].

Considering the size of a microservice, which the term itself emphasizes,
there is no clear answer. Wolff [Wol16] gives a number of guidelines on how
to find the right size for a microservice and, instead of specifying concrete
measures, defines upper and lower limits: A single microservice is developed
by one team, and therefore it may not grow to a size, where multiple teams
are needed for development. Since microservices are used to modularize an
application, they must be so small that a developer can still understand the
entire functionality of the service. Additionally, a microservice should be
replaceable: An increasingly complex and expensive maintainability might
be a reason to replace a microservice. Also, switching to a more powerful
technology could bring significant improvements and requires the service
to be replaceable. Replaceability sets an upper limit for the service size.
Factors that influence the lower limit are the additional cost to provide
infrastructure for a service, the communication overhead due to network
calls and the required data consistence which can only be guaranteed within
an individual service [Wol16, p. 33].

4. Microservices Architecture 14

4.2 Modular design

As explained above, characteristic for the microservices architecture is its
modular design, where all services work independently of each other. This
section explains what to consider when splitting an application into smaller,
independent parts.

4.2.1 Loose coupling and high cohesion

Two key concepts, which are very much applied in object-oriented systems,
also help to divide an application into several independent services: loose
coupling and high cohesion. Loose coupling means that each microservice
has to be able to be changed and redeployed without interfering with other
services. The opposite – known as tight coupling – would be if changes to
a service’s internal implementation would require other parts of the appli-
cation to be adapted as well. As a result, this service cannot be deployed
independently. To accomplish loose coupling, services may only know as lit-
tle as possible about other services. Furthermore, it is also important to
reduce the communication between services to a minimum [New15, p. 30].

In order to facilitate changes to a service, related behavior is grouped to-
gether. Thus, updating an application only requires a change in one place.
This concept is called high cohesion and allows to release updates quickly.
Without high cohesion, an update to the application is likely to require
changes to several services, which then have to be released simultaneously.
This is slower and increases the risk of unsuccessful deployment [New15,
p. 30]. The concept of high cohesion adheres to the single responsibility
principle defined by Martin [Mar10]: “Gather together those things that
change for the same reason, and separate those things that change for dif-
ferent reasons.”

4.2.2 Bounded context

When it comes to the question how to split an application into several mi-
croservices, Newman [New15] and Wolff [Wol16] both refer to the bounded
context pattern defined by Evans [Eva03]: Representing the domain of a
large application in form of a unified model is difficult. It is highly possible
that different teams use slightly different representations of the exact same
thing they are modeling. Multiple coexisting models impede clear commu-

4. Microservices Architecture 15

nication between developers. This can be solved by dividing the application
domain into several bounded contexts. A bounded context defines the part
of the domain where a specific model is applicable. Within this context,
the model acts as a ubiquitous language and simplifies the communication.
The context is framed by an explicit boundary. Everything outside of this
boundary does not concern the context or its model. At the points across
the boundaries where different bounded contexts interact, a translation of
the model is necessary [Eva03, pp. 335 sqq.].

For an exemplary domain of a webshop application, two separate bounded
contexts could be the product catalog and the warehouse. Both have differ-
ent models of a purchasable product. The ordering system holds information
about color, size or description, whereas the warehouse system holds infor-
mation about the stock.

The defined boundaries provide a blueprint for the division of the applica-
tion into microservices. Hereby every bounded context is represented by an
individual microservice. It is also possible that a single bounded context is
divided into multiple microservices. For instance, this would be reasonable
if one part of the bounded context has to be scaled out more than others.
However, a single microservice should not cover multiple bounded contexts
[Wol16, p. 45].

4.3 Data persistence

It is of particular importance that each service has to own its private data
storage and must not share it directly with other services. While it is com-
mon for monolithic architectures to have a single database, microservices
use a decentralized approach for data persistence. Each service can decide
individually which data persistence technology is the most suitable for its
needs. For example, this could be a relational database or any kind of NoSQL
database like a graph database or a key-value database. Although it is also
possible for a monolith to use different kinds of databases, it is a salient char-
acteristic of a microservices architecture to combine several storage technolo-
gies to optimize data persistence – this is called polyglot persistence [LF14].

As explained above, when designing microservices according to the bounded
context pattern, their contexts share boundaries. In comparison, in a mono-
lith these contexts would be linked by a simple foreign key relationship
within a single database. Whereas in a microservices architecture, there is
also a boundary of different databases. Therefore, a mechanism is needed

4. Microservices Architecture 16

Service BService A

B-Entities

/b/42

41
42
43

42137603

A-Entities

...

...

...

Figure 4.1: Service A accessing an entity with id 42 owned by Service B;
adapted from [New15, p. 85]

to represent the foreign key relationship. A microservice is not allowed to
access a data storage owned by another microservice because this would in-
troduce a tight coupling between these two services: If the owning service
updates its data model, the dependent service also has to update its model.
Both services have to be deployed simultaneously; otherwise, the data ac-
cess would break. To avoid this, the owning service exposes an API that
provides the data to other services. Figure 4.1 illustrates this approach. As
described in Subsection 4.4.1, this can also be performed in reverse direction
by propagating the data from the owning service to dependent services in
an asynchronous manner. On no account, dependent services are allowed to
directly access databases they don’t own [New15, pp. 82 sqq.].

4.4 Integration and communication

Microservices should be decoupled in order to allow independent develop-
ment of each service. In addition, the implementation of a microservice
should not be restricted to any given technology. Therefore, communication
between microservices should be technology agnostic. This allows services
to consume other services without having to deal with technological hurdles
and without being forced to use a particular technology [New15, p. 40].

4.4.1 Types of communication

The most common approaches used for service communication are remote
procedure calls (RPCs) and lightweight messaging. RPCs follow a simple,

4. Microservices Architecture 17

synchronous request-response pattern, e.g. HTTP – often in form of REST-
ful APIs. A benefit of HTTP is that it has built-in caching, which can be
leveraged to reduce the number of requests for seldom changing data. In
contrast to synchronous RPCs, messaging is an asynchronous pattern that
decouples services even more. The messaging infrastructure does not con-
tain business logic and is only responsible for routing the messages. The
entire business logic resides in the distributed services [LF14]. Of particular
importance is that a lightweight message bus is used because the cost of an
enterprise service bus (ESB) and its associated connectors is high [GT17].

Synchronous and asynchronous communication

To integrate microservices, a variation of communication styles can be used.
These styles can be classified by different characteristics. The characteristic
that affects the application design the most, is whether the communication
is performed synchronously or asynchronously.

Synchronous communication means that a caller makes a call to a service
and waits until this service returns a response; i.e. the caller blocks until the
operation is completed. This is similar to the usual in-process communication
in the form of method calls. In comparison, with asynchronous communica-
tion, the caller does not wait for a response from the called service. Thus,
the caller cannot be sure if the called service successfully processed the call;
most often the caller is not even concerned by the result. In case the caller
does need the result, it could receive it via a succeeding asynchronous call
in reversed direction. This approach can be useful for long-running calcula-
tions where it would be too expensive to keep open a connection between
caller and callee. Asynchronous communication increases the decoupling of
services and helps to build a better scalable application but also increases
the complexity of the overall application. Especially for long-running cal-
culations if the result will be further processed by the caller: It could be
possible that the caller has to keep state for further processing or that this
particular instance of the caller has crashed or has been removed from the
application in the process of scaling down [New15, pp. 42, 57 sq.].

Torre et al. [TWR17] recommend to keep internal communication between
microservices at a very minimum but when integration is needed, it should
be done entirely in an asynchronous manner. That being said, a microser-
vice still provides an API which can be called synchronously by clients. Such
clients could be a single-page application, a mobile application or an MVC
service. However, the successful processing of a client request by a certain
microservice may not depend on further synchronous calls to other microser-

4. Microservices Architecture 18

vices during this processing. A microservice depending on synchronous calls
has a negative impact on the overall response time. Moreover, services are
not totally autonomous anymore and a failing service in this synchronous
call chain negatively impacts the application’s resilience. In case a service
needs data owned by another service, it is advised to not rely on synchronous
queries. But in order to have this data available, it should be replicated into
the dependent service’s data storage. This data can likewise be provided by
asynchronous messages [TWR17, p. 46]. Following this approach results in
eventual consistency of the data; this term will be explained in Section 4.5.

Commands, queries and events

Besides the synchronicity, communication patterns can also be classified in
three types of collaboration: queries, commands and events. A collaboration
between two services can combine multiple styles [Hor17, pp. 79 sqq.].

Queries are used when a service needs information from another service. A
query is done in form of a request-response pattern, i.e. synchronously. As
mentioned above, synchronous communication between internal microser-
vices should be avoided; therefore, queries are only applied by clients outside
the application to request data from a microservice. When using HTTP, a
query would conform to a GET request [Hor17, pp. 80-82].

Commands are used when a service needs to have another service per-
form an action without needing a response. Commands can be sent syn-
chronously [Hor17, pp. 82-84], conforming to a HTTP POST or GET re-
quest, or also asynchronously in form of single-receiver message-based com-
munication [TWR17, pp. 50 sq.].

Events are used when one or more services need to be informed about
changes from another service. This type of collaboration is asynchronous
because the service, which has updated its data, does not call the subscribed
services directly. Since there is no direct call, subscribed services may not re-
ceive or process the event immediately. There are two ways how event-based
collaboration can be implemented: The first one is to use a message-based
approach. All services that want to receive information about a particular
event, subscribe to a central message bus. When this event occurs, the ser-
vice publishes it to the message bus which then routes the event message to
the subscribed services. The subscribed services do not need to know any-
thing about the publishing service; they only subscribe to a certain topic, to
which the events are published [TWR17, pp. 51 sq.]. The second approach
is to have services expose an event feed that is polled by subscribed ser-

4. Microservices Architecture 19

Subscribed
Service B

Subscribed
Service A

Subscribed
Service C

Event

Event

Event

Event

Topic

Publishing
ServiceAPI

Figure 4.2: Event-based collaboration using a message bus

Subscribed
Service B

Subscribed
Service A

Subscribed
Service C

PollPublishing
ServiceAPI Event

Store

EventPoll

Poll
Event

Event

Figure 4.3: Event-based collaboration using an event store

vices using RPCs. For example, the event feed could be reachable via an
HTTP endpoint. Subscribed services send GET requests to the endpoint
and receive new events, which they can process subsequently. Although the
RPC-based polling itself is synchronous, the collaboration is asynchronous
because pushing the events into the event store and polling them is not linked
temporally [Hor17, pp. 85-87]. Figures 4.2 and 4.3 show both approaches in
comparison.

4.4.2 Fault tolerance

A microservices-based application is a distributed system; this implicates
that failures will occur eventually. Many of these system failures cannot be
known at design or build time; and, thus the running system has to be able
to cope with them [Vog16]. When designing a microservices architecture,
it has to be taken into account that services will fail or become unreach-
able. In this cases of failure, the rest of the application still has to function

4. Microservices Architecture 20

without the failed services. For example, in case the basket service fails in a
webshop application, users are still able to view the product catalog. To han-
dle and mitigate failures, several stability patterns can be applied [Nyg07,
pp. 110 sqq.], which are explained as follows.

Timeouts and retries

For outbound requests, timeouts are applied to fail fast if it’s unlikely that a
call to a service will return successfully and it is reasonable to stop waiting
for the call to return. Timeouts can be combined with a retry pattern. Here
a failed call will be re-executed. The problem with immediately re-executed
calls is that they are highly likely to fail again. From the perspective of
an application user it would be preferable to fail fast and return a failure
result. A sensible default timeout would be about 250 milliseconds, of course,
depending on the individual use case [Nyg07, pp. 111 sqq.].

Circuit breakers

The circuit breaker pattern is used to prevent the execution of a call if it
is known to have failed before. This allows to fail fast because no time-
out has to be awaited. All calls to a remote service go through a circuit
breaker component that keeps track of the service’s health status [Nyg07,
pp. 115 sqq.].

The circuit breaker has three states, as shown in Figure 4.4, which signal the
health of the service to be called. A circuit breaker’s initial state is closed.
All calls to the remote service are passing through. In case a call fails, the
circuit breaker increases a failure count. When this count exceeds a defined
threshold, the circuit breaker goes into the open state. In this state, no calls
are passed through to the remote service, but immediately throw an error.
After some time, when it’s possible that calls will succeed again, the circuit
breaker goes into a half-open state and the next call is passed through to
the remote service. If the call succeeds, the circuit breaker switches into
the initial closed state. If the call fails, it switches into the open state. It is
possible to distinguish between failure types (e.g. timeouts or various HTTP
error status codes) and apply different thresholds [Nyg07, pp. 115 sqq.].

Another approach to go from open to closed state is to use health checks
instead of going into the half-open state. The circuit breaker sends health
check calls to the remote service and, depending on the response, resets into

4. Microservices Architecture 21

Closed

on call: pass through
call succeeds: reset count
call fails: count failure
threshold reached: trip breaker

Open

on call: fail
on timeout: attempt resettrip breaker

Half-Open

on call: pass through
call succeeds: reset
call fails: trip breaker

attempt
reset

reset

trip
breaker

Figure 4.4: States of a circuit breaker [Nyg07, p. 116]

the initial closed state [New15, pp. 212 sq.].

It is important to log state changes of a circuit breaker as it can be used as
a metric to indicate problems in the application [Wol16, p. 204].

Bulkheads

Bulkheads are a pattern applied to limit the damage of an entire system if
a part of it fails. The term comes from the metal partitions that are used to
divide a ship into watertight parts; if a leak occurs in the ship, the bulkhead
prevents water from moving into all parts – i.e. only one part is damaged
but the rest of the ship stays intact [Mic17a].

When a consumer sends requests to multiple microservices in parallel, it
allocates resources for each request. If one of these services does not re-
spond, the consumer’s connection pool will become exhausted since all calls
to the unresponsive service block resources. As a result, the consumer is no
longer able to send requests to healthy microservices because it can no longer
acquire any more connections. By applying the bulkhead pattern, separate
connection pools for each service are used. Thus, requests to healthy services
are still possible if one service is unavailable [Mic17a].

4. Microservices Architecture 22

Caching

A caching mechanism can be used to make an application more fault tol-
erant. By implementing client-side caching, it is possible to serve data to
the user, even if a microservice is not available. Since HTTP has a built-
in caching concept, the implementation of caching is simplified. Although
the cached data may be outdated, serving stale data to the user is often
preferable to returning an error. Besides client-side caching, the same re-
silience could be achieved using a reverse proxy, where the data is served by
a proxy server between server and client. This may be preferable to client-
side caching due to its simple integration [New15, pp. 225-228].

4.4.3 Versioning

Reasons to build applications in form of a microservices architecture is to
develop each service independently. This individual, rapid evolution of a
service may impact consuming clients, which rely on the service’s API. Re-
quirements for a service will eventually change and so will its exposed API;
but changes to the API must not break consumers.

Semantic versioning

Versioning the API is an approach to communicate changes to consumers.
Semantic versioning is a specification that describes how version numbers
should be applied: The specification defines a version schema consisting of
the form MAJOR.MINOR.PATCH. The major version is incremented when intro-
ducing incompatible API changes, which would break consumers of the pre-
vious major version. Incrementing the minor version signals added function-
ality in a backwards-compatible manner. The patch version is incremented
for bug fixes, which are also backwards-compatible [Pre].

When releasing a new major version, the old major version still has to remain
available for some time in order not to influence consuming clients and give
them time to adapt to the new major version. This can either be done by
exposing two different endpoints in one service or by running two services
with different versions concurrently [New15, pp. 64-67].

4. Microservices Architecture 23

Tolerant reader

The tolerant reader pattern is about the consumer expecting changes to the
API. For example, when a consumer calls an API, it only uses the fields
of the response it needs and ignores the rest. Therefore, if a response of a
modified API returns additional fields, these do not impact the consumer
[Fow11]. The tolerant reader pattern adheres to the robustness principle,
also known as Postel’s law, which states: “Be conservative in what you do,
be liberal in what you accept from others [Pos80].” An anti-pattern is to
generate classes on the consumer side from a given schema provided by the
API. Updating the API often breaks the consumer [Fow11].

Consumer-driven contracts

Another pattern to keep the number of breaking changes to a minimum is
called consumer-driven contracts. These contracts express expectations of
the consumer to the API provider and show how a consumer uses the API.
Consumer-driven contracts are represented in form of tests that assert the
expectation to the provider. These tests are available to the provider and give
insights how the consumers implement the API. As a result, the provider
can determine if a change would introduce failing tests and consequently
break a consumer. Furthermore, consumer-driven contracts also reveal if
parts of an API are not used at all. This could help the provider to refactor
and optimize its API. A limitation of this pattern is that it only works if
the consumers are known as its the consumers responsibility to provide the
contracts. Therefore, this pattern cannot be applied to public APIs [Rob06].

4.4.4 Exposing services to external clients

In a microservices application only certain services should be exposed to
external clients. The API gateway pattern acts as a facade for the internal
microservices. It provides a single point of entry for all external clients and
routes the requests to the back end microservices. Additionally, an API
gateway can also take over responsibilities from the microservice, for example
terminating incoming HTTPS connections or authorizing the client [Rica].

An API gateway can improve performance by aggregating requests to mul-
tiple microservices. Particularly for mobile devices, this can reduce the re-
quired amount of round trips between client and server. Furthermore, the
API gateway can strip information that is not needed by a particular client,

4. Microservices Architecture 24

resulting in a smaller request payload [Sti15].

A specific approach to implement an API gateway is the backends for fron-
tends (BFF) pattern. Here, for each type of client a specifically adapted API
gateway is implemented [Rica].

4.5 Eventual Consistency

The CAP theorem by Brewer [Bre00] states that a distributed system, con-
sisting of multiple nodes or instances, can only fulfill two of the following
three guarantees at any given time:

• Consistency: All nodes in the system return identical results at all
times and the results are the most recent state.

• Availability: Every node always returns a result within an acceptable
time.

• Partition tolerance: The system is still operational even if a part of
the nodes fail.

As already mentioned, a characteristic of a microservices architecture is
that the overall application is still functional to a certain degree if indi-
vidual services fail. Therefore, a microservices architecture has to comply
with partition tolerance. Depending on the requirements to an application,
it either has to sacrifice availability or consistency. A common reason to use
microservices is the need for a highly scalable application. If the consistency
requirements allow that data is not the most recent, an AP system fits the
needs best.

A system with weak consistency does not guarantee that an update to a data
object will be visible to subsequent accesses. In the context of distributed
storage systems, Vogels [Vog09] defines eventual consistency as a special
form of weak consistency. This means the system guarantees that subsequent
accesses will eventually return the most recent value if no further updates
are made to the data object.

This definition can also be applied to microservices: When data is sent be-
tween services using asynchronous messaging, as covered in Subsection 4.4.1,
message-receiving services may not have the most recent data, because of
the delay in message transmission. The application is eventual consistent
because messages are received eventually and the data can be updated.

4. Microservices Architecture 25

Compensating transaction

Business processes often span over multiple microservices, e.g. an order in
a webshop application could involve a basket service, an ordering service, a
warehouse service and a payment service. During a checkout, the applica-
tion might become inconsistent and after the process has been completed
successfully, the application becomes consistent again. The problem with
eventual consistency is when a step in the business process fails and some
already completed steps need to be undone. This is accomplished using a
compensating transaction. A simple reset of the state might not be possible
if other changes have already been applied to the data. Therefore an intel-
ligent workflow is needed for the business process, defining how successful
steps can be undone [Mic17b].

Since a compensating transaction is also eventually consistent, it can fail,
too. A solution to this problem is to implement compensating transactions
as idempotent commands. Therefore, failed compensating transactions can
be retried [Mic17b].

As a last resort to fix the inconsistent state of the application, either an
automated background process can be used [New15, pp. 91 sq.] or manual
intervention can be performed [Mic17b].

4.6 Advantages and disadvantages

Monolithic architectures have a number of shortcomings, as covered in Sec-
tion 3.2, that restrict an applications growth once it has reached a certain
size. As a result, the time for development of new features increases signifi-
cantly. Microservices architectures have evolved for the reason of mitigating
the monolith’s downsides and to overcome its limitations. But this architec-
tural pattern also comes with new challenges. This section emphasizes the
benefits and drawbacks of microservices, focusing on the technical perspec-
tive.

4.6.1 Advantages

The main characteristic of a microservices architecture is its distribution
over independently functioning services. This brings the following benefits.

4. Microservices Architecture 26

Scaling

The modularity of the application architecture and the independence of
services allows to horizontally scale individual services. Several instances of
a microservice can be run in parallel. The number of instances can be scaled
independently of other microservices; this enables a precise load balancing.
In comparison, load balancing in a monolithic architecture is accomplished
by scaling instances of the entire application [New15, pp. 5 sq.].

Since the load on a web application varies over time, creating and removing
service instances allows the application to adapt to the load. Furthermore,
horizontal scaling enables better utilization of resources and, in combination
with on-demand provisioning of cloud resources, results in a more effective
cost control [New15, pp. 5 sq.].

Resilience

Due to the service independence, failures are isolated and do not cascade
through the entire application. A correctly designed architecture is impor-
tant to cope with service failures. Since failures will occur eventually, the
application may degrade in functionality but still remains in a state where
it is able to successfully serve a part of the requests. Owing to the modular
design, a microservices application can be distributed over different physical
servers, and therefore mitigate the risk of hardware failure. The distributed
nature of microservices requires them to communicate via a network. But
networks aren’t reliable and introduce a new possible source of failure which
has to be considered when designing an application [New15, p. 5].

Deployment

Deploying a monolith brings a high risk because the application has to be
deployed as a whole. As a result, deployments are done infrequently and
it takes time until new features can be release. In a microservices architec-
ture, each service can be deployed and released independently which enables
shorter release cycles. Also, problems with a new release can be identified
and isolated quickly. Short release cycles require a high degree of automa-
tion. Approaches like continuous integration and continuous delivery allow
to run every commit against several test suits and then integrate the changes
into production using a pipeline system [New15, pp. 103 sqq.].

4. Microservices Architecture 27

Heterogeneous technology

A microservices architecture allows to use a different technology for each
service implementation. In general, developers are free to choose the lan-
guage, frameworks and databases to design a microservice that fits the re-
quirements. Moreover, it is also possible to implement the first prototype
in any new language and then, depending on the gained experience and
learnings, continue the development or restart with a different technology
stack [New15, pp. 4 sq.]. In agile environments, requirements are likely to
change and the development needs to be adaptable [WC03]. With the same
approach, an entire microservice can be rewritten with a better suited tech-
nology stack [New15, pp. 4 sq.].

All microservices share common functionality that every service must im-
plement, e.g. logging, handling of failures in other systems, subscribing and
publishing to the message bus, health checks, etc. To reduce this initial
effort, service templates which implement all common functionality for a
specific technology can be utilized. By leveraging these templates, a team
can immediately get going with the implementation of business functional-
ity. The effort of providing such service templates is only reasonable if the
allowed technology stack is restricted. This is contradictory to a completely
heterogeneous technology [New15, pp. 22 sq.].

Team structure

When developing a monolith, teams are often organized according to their
responsibility, e.g. a team of front end developers, a team of back end devel-
opers, a team of database administrators, etc. Team sizes increase with the
growing application. Applying the microservices pattern makes it possible
to break them down into cross-functional teams organized around services.
This reduces the team sizes, and thus enables the teams to be more pro-
ductive. Each team is responsible for the development of its microservice.
When implementing features within a microservice, unnecessary coordina-
tion overhead between multiple teams is eliminated. Only changes to ser-
vice boundaries require coordination with the affected teams [New15, pp. 7,
191 sqq.].

According to Conway’s law, an organization will produce an application de-
sign that is a copy of the organization’s communication structures [Con68].
For the correct utilization of the microservices pattern, it is therefore es-
sential that the teams are properly structured and aligned with the service

4. Microservices Architecture 28

boundaries. Splitting an organization into several loosely coupled teams on
purpose in order to achieve loosely coupled services is called the Inverse
Conway Maneuver [Tho].

To handle the coordination overhead, a core team can be formed. Members of
each service’s team are represented in the core team. This team is responsible
for architectural decisions and coordinates refactorings that require to move
functionality from one service to another [BHJ16].

Rapid development

In a microservices architecture, each team owns its services and is solely
responsible for its development. If a team has to require permission in order
to integrate the API of another service, this blocks and slows down the
development. By eliminating the requirement for approval, a high degree of
innovation can be realized [Kil16].

Within a monolith, the deprecation of functionality is difficult; whereas
within a microservices architecture, calls to a service’s public API can be
analyzed to find out which other microservices still use the service. If an-
other team still depends on the deprecated service, the service ownership
is transferred to this team and it is now responsible for the maintenance.
Due to the limited human resources a team has, it is required to migrate or
terminate the dependency to the deprecated service. Then the deprecated
service can be eliminated [Kil16].

4.6.2 Disadvantages

The distribution of services strongly facilitates fast development of large
applications, but also entails some challenges that one has to be aware of.

Latency

Microservices are distributed and communicate over a network. This impli-
cates latency and a longer response time. Depending how the microservices
are distributed – in a single data center at one location or multiple data
centers across the globe – this latency can be fairly high. This problem can
be alleviated by reducing the need for communication between microser-
vices. For example, different approaches are building a more course-grained

4. Microservices Architecture 29

API or providing batch endpoints to combine several requests. But after
all, communication between microservices cannot be eliminated completely.
Another approach to reducing latency is to run services in the same data
center or even on the same physical machine if they share a boundary and
need to communicate [Wol16, pp. 69 sqq.].

Identifying boundaries

In a microservices architecture, refactoring that only concerns a single ser-
vice is simple. If the refactoring involves multiple services and functionality
has to be moved across service boundaries, it gets complex. Due to possible
different technology stacks, code often cannot easily be moved. Functional-
ity might be rewritten with a different framework or even with a different
language [Wol16, pp. 74 sqq.].

At the start of a new project, requirements and business domain often are not
completely clear or, depending on the agile nature of many projects, require-
ments will change over time. Designing the right architecture and splitting
the application domain into correctly sized microservices is a difficult task
and often leads to problems at the first attempt [Wol16, pp. 74 sqq.].

Overall complexity

A microservices architecture introduces a greater overall complexity. Mi-
croservices expose APIs to be consumed by other services. These APIs are
contracts and it requires effort to evolve them without breaking consumers.
Concepts like versioning or consumer-driven contracts can help with the API
design, but do not eliminate the complexity entirely [New15, pp. 62 sq.].

As discussed in Section 4.5, strong consistency in distributed systems of-
ten restricts the scalability, and therefore an eventual consistency model is
applied. This results in new challenges where the application has to cope
with stale data and must be able to recover from data inconsistencies. This
often involves the underlying business process that spans over multiple mi-
croservices and requires coordination between development teams [Wol16,
p. 73].

Since communication is not reliable and failures will eventually happen,
microservices require a considerable amount of work to make them fault-
tolerant. Furthermore, to ensure an application’s resilience, monitoring of

4. Microservices Architecture 30

each individual microservice is important in order to detect and analyze
errors. This introduces the need for a monitoring system that gathers all
metrics [Wol16, p. 77].

Dividing an architecture into separate, independent services exposes many
boundaries which are a possible source of error. To ensure correct behavior
across these boundaries, additional testing is needed. Clemson [Cle14] dis-
cusses several kinds of testing strategies, which range from fine-grained to
coarse-grained focus: unit tests, integration tests, component tests, contract
tests and end-to-end tests. The more coarse-grained focused they are, the
more services are involved and the more effort the tests require writing.

Chapter 5

Splitting a Monolithic Application

This chapter shows how an application that was built following a mono-
lithic architecture, can be transformed into a microservices architecture. As
a read-world example serves an application named allReady, which is avail-
able as open source. In a prototypical approach, this application is split into
microservices. The bounded context pattern is applied and evaluated on its
practicability. Goal of the transformation process is to obtain an application
architecture consisting of independent services, which can be deployed and
scaled individually, in order to leverage the benefits of microservices. As a
method to split the monolithic architecture, an incremental approach, which
extracts one service after another, is applied and evaluated. In the end of
this chapter, the overall transformation process is discussed; in particular,
difficulties and hindrances that occurred during this process are addressed.

5.1 allReady – an open source monolith

The open source software allReady1 serves as an example of a monolithic
application. It is a platform for preparedness campaigns delivered by human-
itarian and disaster response organizations. The main focus is on decreasing
the impact of disasters. For example, these disasters could be storm floods,
where people need to find a place to sleep; earthquakes, where emergency
responders need to be coordinated; or droughts, where food supplies need
to be managed. Using allReady, local communities can prepare for disasters
by coordinating volunteers with different skill sets. Furthermore, it makes it

1https://github.com/HTBox/allReady

31

https://github.com/HTBox/allReady

5. Splitting a Monolithic Application 32

easier for volunteers to get involved and lowers the barrier to start partici-
pating.

Development of the application has started in July 2015 and since then over
3600 commits from over 160 contributors have been made.

5.2 Solution architecture

allReady gives the user two options to interact with the application. They
can either use the website available in the browser or access the platform
with the mobile app on a smartphone. Both clients are provided with data
by a monolithic application that is developed using .NET Core 2.0. This
monolith provides REST endpoints for the mobile app and also renders the
HTML views for the web application. The monolithic application is designed
following the MVC pattern. Figure 5.1 shows the architectural design.

Besides the domain-specific logic, the monolith also manages user authenti-
cation. For this purpose ASP.NET Identity2 is used. Once a user has logged
into the web application, a cookie is set to authenticate further requests. For
the mobile app a custom implementation of authentication tokens is used:
The application assigns a personal token to the user. This token is sent with
every request and is validated by a middleware implementation on the server
side before executing controller logic. The library Hangfire3 is used for the
execution of recurring jobs.

For sending email and text message notifications a service is implemented
with Azure WebJobs4 targeting .NET Framework. When the monolithic
service pushes messages into the queue, the notification service is triggered
and processes the messages. Depending on the message, it sends HTTP
requests to third-party services which then send emails or text messages.

5.3 An incremental approach for splitting the monolith

To transform the monolithic architecture of allReady into microservices, an
incremental approach is taken. With each increment, one service is extracted

2https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=
aspnetcore-2.0

3https://www.hangfire.io/
4https://docs.microsoft.com/en-us/azure/app-service/web-sites-create-web-jobs

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-2.0
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-2.0
https://www.hangfire.io/
https://docs.microsoft.com/en-us/azure/app-service/web-sites-create-web-jobs

5. Splitting a Monolithic Application 33

Mobile App

Browser

Monolith

Notif ication
Service

View
Rendering
(MVC)

Data
Access

Business
Logic

Hangf ire

Database

Back end

Identity
REST

Endpoints

Azure Storage Queue

Figure 5.1: Monolithic architecture of allReady

from the monolith to achieve better decoupling and a higher cohesion of
business capabilities.

5.3.1 Identity service

As a first step, the bounded context pattern, explained in Subsection 4.2.2,
is applied to identify the boundaries on the basis of which the application
can be divided into separate microservices.

The monolithic application utilizes ASP.NET Identity which uses several en-
tities to model the access control for the application users. The user entity
consists of multiple fields storing personal information and also data about
the authentication process. These entities are persisted in the same database
as the main model which holds information about allReady’s business capa-
bilities. The main model references the user entity to model relationships,
e.g. a campaign is managed by an organizer that is represented in form of
the user entity. The analysis shows that most user entity fields required in
the identity model are unused when performing business logic. In fact, only
the user ID is required. Therefore, the identity model can be separated into
an individual context. In order to interact across the context boundaries,
a user entity is existing in both contexts. Figure 5.2 shows the identified
contexts.

To extract the identity context into a separate service, the framework Iden-
tityServer45 is used. It is available for .NET Core 2 and provides additional

5http://docs.identityserver.io/en/release/

http://docs.identityserver.io/en/release/

5. Splitting a Monolithic Application 34

User User Campaign

...

Event

Organization

Identity
Role

Token

Claim

Login

Identity Context Main Context

Figure 5.2: A simplified depiction how the application domain is separated
into two bounded contexts

packages to utilize ASP.NET Identity as the underlying data abstraction.
This enables a faster service extraction because no database schema has to
be adapted or rewritten; thus, the identity schema is moved from the mono-
lithic database into a new one that is now owned by the identity service.

Many existing database queries in the main database rely on the referential
integrity to the user entity. In order to not break these queries, the user
entity is not removed from the main schema entirely but only the required
fields are kept – for the prototypical implementation this is only the ID.
Further fields might be replicated from the identity service.

In case a new user has registered with the identity service, they are still not
available in the main service. For instance, they cannot be assigned to an
event as a volunteer. To propagate new users, the identity service publishes
events to which the main service is subscribed. Since the processing of the
received event in the main service is eventually consistent, it might take
some time before the user is replicated to the main database and can be
assigned to an event.

To enable publishing and subscribing to events, a message bus is introduced
into the application architecture. The open source software RabbitMQ6 is
utilized, which provides the needed functionality for sending messages. Be-
cause a dependency to a specific message bus would introduce unnecessary
constraints, all microservices only use an abstraction of the message bus.

6https://www.rabbitmq.com

https://www.rabbitmq.com

5. Splitting a Monolithic Application 35

Mobile App

Browser

Main Service

Identity Service

Notif ication
Service

View
Rendering

Data
AccessBusiness

Logic
Hangf ire

Main
Database

Back end

Clients

Business
Logic Identity

REST
Endpoints

REST
Endpoints

Azure Storage Queue

UserCreatedEvent

Identity
Database

Figure 5.3: Extraction of the identity service

For several views the main service needs to display information of multiple
users existing in the application, e.g. a list of all volunteers for an event.
To populate this view with the volunteers’ names, the view rendering com-
ponent queries the identity service. The identity services provides a REST
endpoint to serve the user information. In order to protect this endpoint
OAuth 2.0 and OpenID Connect are used.

Authorization and authentication

IdentityServer4 implements the OAuth 2.0 and OpenID Connect proto-
cols and enables an authentication and authorization workflow for different
clients. OAuth 2.0 is a protocol to enable authorization in services and uses
an access token that is validated. The validation process checks if the access
token is granted the required scopes to access an endpoint. OpenID Connect
is a layer built on top of OAuth 2.0 and enables authentication by provid-
ing information about the user’s identity. This information is embedded in
so-called claims that are embedded in an id token.

By using IdentityServer4, both clients – web application and mobile app –
are able to use the same protocol instead of using a cookie based authentica-
tion for the web application and a custom token-based implementation for
the mobile app. Figure 5.3 shows the application architecture in a simplified
form after extracting the identity service.

5. Splitting a Monolithic Application 36

1 public static IEnumerable<IdentityResource> GetIdentityResources() {
2 return new List<IdentityResource> {
3 new IdentityResources.OpenId(),
4 new IdentityResources.Profile(),
5 new IdentityResources.Email(),
6 new IdentityResources.Phone(),
7 new IdentityResource(
8 name: "ar.profile",
9 displayName: "AllReady Profile",

10 claimTypes: new[] {
11 AllReadyClaimTypes.Organization,
12 AllReadyClaimTypes.UserType,
13 AllReadyClaimTypes.TimeZoneId,
14 ...
15 })};}

Program 5.1: Definition of identity resources within the identity service; lines
3 to 6 define standard claims from the OpenID Connect protocol [SBJ14],
whereas lines 7 to 15 define custom claims that are required by the main
service

The identity service’s purpose is to issue identity and access tokens which
are then used to authenticate and authorize the communication between
client and services. Within the identity service, resources are defined that
enable authentication and authorization. Here a distinction is made between
identity resources for authentication and API resources for authorization.
Identity resources represent claims of an identity, e.g. the email address.
API resources represent endpoints and are used to restrict client access, e.g.
a specific client might only have access to certain endpoints.

Program 5.1 shows the configuration of identity resources that will be em-
bedded as claims in an identity token and are used for authentication. Be-
sides standard claims from OpenID Connect, the ar:profile claims are used
to add further information concerning allReady to the user identity. In Pro-
gram 5.2 is shown how API resources are defined. Currently only a resource
for the users endpoint, which is located within the identity service, is speci-
fied. When additional microservices are added to the application, their ex-
posed APIs need to be added as an API resource in order to manage autho-
rization of different clients.

To access the specified identity and API resources, each client has to be con-
figured within the identity service. Of particular importance are the allowed
scopes that define which resources a certain client is allowed to access. Pro-
gram 5.3 shows the definition of the main service called MVC client. This
client has access to all existing identity and API resources.

5. Splitting a Monolithic Application 37

1 public static IEnumerable<ApiResource> GetApiResources() {
2 return new List<ApiResource> {
3 new ApiResource("users", "User API within auth service")
4 // add further microservice APIs here
5 };}

Program 5.2: Definition of API resources within the identity service

1 public static IEnumerable<Client> GetClients() {
2 return new List<Client> {
3 new Client {
4 ClientId = "mvc",
5 ClientName = "MVC client",
6 AllowedGrantTypes = GrantTypes.HybridAndClientCredentials,
7 ClientSecrets = { new Secret("mysecret".Sha256()) },
8 AllowedScopes = {
9 "openid", "profile", "email", "phone", "ar.profile", // identity res

10 "users" // API resource
11 },
12 ...
13 },
14 new Client { ... }
15 }}

Program 5.3: Definition of clients and their allowed scopes which refer to
identity and API resources; line 9 defines identity resources and line 10 defines
the API resource to access the users endpoint

Identity and access tokens are transferred in form of JSON Web Tokens
(JWT) [JBS15] between the main service and the identity service. JWTs
contain the issued claims and are self-contained. They are signed by the
identity service which allows other services to validated the integrity of to-
kens using the identity service’s public key. When a client accesses a pro-
tected microservice, it attaches the access token to the HTTP Authorization
request header using the Bearer scheme. Since the microservice can validate
the token without sending a request to the identity service, this facilitates
a decoupling from the identity service. Program 5.4 shows an access token
payload for a request sent from the main service to the users endpoint.

As a result of the decoupling from the identity service, microservices can
process requests even when the identity service is not available. Thus, an
application user does not notice any disturbance if he is already logged in
and as long their access token does not expire.

5. Splitting a Monolithic Application 38

1 {
2 "nbf": 1524908056,
3 "exp": 1524911656,
4 "iss": "http://localhost:5105",
5 "aud": ["http:// localhost:5105/resources", "users", ...],
6 "client_id": "mvc",
7 "sub": "fd642ace-48a1-4903-9879-c583f35931d3",
8 "auth_time": 1524908054,
9 "idp": "local",

10 "ar:usertype": "SiteAdmin",
11 "scope": ["openid","profile","email","phone","ar.profile","users", ...],
12 "amr": ["pwd"]
13 }

Program 5.4: The payload of an access token in form of a JWT: sub is the id
of the logged-in user and as ar:usertype indicates, they are allowed to to exe-
cute actions which require SiteAdmin rights. The URI http://localhost:5105
represents the identity service as the issuer (iss) in a local development en-
vironment.

5.3.2 A common API service for all clients

In the next step, the view rendering component is extracted from the main
service. Therefore, the view logic and view models are moved into a new
ASP.NET MVC service. The main service needs to expose an API so that
the MVC service is able to call the business logic and request data required
for view rendering. Since the main service did already provide a REST API
for the mobile app, this is also considered designing the new REST API.
Therefore, the existing REST API and the existing business logic, which
was previously provided to the view rendering component, are merged. The
merging process has shown that some functionality was implemented twice;
this has been cleaned up in order to provide a consistent REST API. Fig-
ure 5.4 depicts the application architecture after extracting the MVC service.

To allow the REST API to constantly evolve, versioning is introduced. Thus,
the REST API is independent of the web application, the mobile app or
any other consumer. Every route of the main service contains the major
version number; when breaking changes are necessary, the version has to be
incremented. To make sure the already released mobile app does not break
with the introduced versioning, the old routes need to remain available until
the mobile app’s current version is not in use anymore. ASP.NET Core
allows annotating controller methods with multiple routes, which eases the
transition to the new versioning approach. Program 5.5 shows how multiple
routes can be specified.

5. Splitting a Monolithic Application 39

Mobile App

Browser Main Service

Identity
Service

Notif ication
Service

View
Rendering

HTTP
Client Data

AccessBusiness
Logic

Hangf ire

Main
Database

Back end

Clients

REST
Endpoints

Azure Storage Queue

UserCreatedEvent

Identity
Database

MVC Service

Figure 5.4: Separation of main service and MVC web application

1 [Route("api/v1/Tasks")]
2 public class TaskController : Controller {
3 [HttpPut("status")] // resolves to: api/v1/Tasks/status
4 [HttpPost("~/api/task/changestatus")] // legacy route
5 public async Task<IActionResult> ChangeStatus(TaskChangeModel model) {
6 ...
7 }}

Program 5.5: Multiple route definitions on a single controller method; con-
troller routes are extended by method routes, unless prefixed with tilde (˜)

Fault tolerance

To mitigate failures that will eventually occur in a microservices architec-
ture, several patterns are applied. The MVC service uses HTTP calls to com-
municate with the identity service and the main service. These HTTP calls
are a potential source of error and consequently need to be fault-tolerant.
Polly7 is a library that allows to wrap HTTP calls with fault-handling mech-
anisms to increase application resilience. As Program 5.6 shows, Polly allows
to specify different fault-handling approaches which can also be combined
to a policy wrap. The following policies are used to handle failures:

• Line 2 defines a timeout policy. Each request that takes longer than
three seconds will fail.

• Lines 4 to 8 define a retry policy that handles all failures but excep-
7http://www.thepollyproject.org

http://www.thepollyproject.org

5. Splitting a Monolithic Application 40

1 public PolicyWrap CreatePolicies() {
2 var timeoutPolicy = Policy.TimeoutAsync(TimeSpan.FromSeconds(3));
3
4 var retryPolicy = Policy
5 // don't retry on inner circuit breaker exception
6 .Handle<Exception>(e => !(e is BrokenCircuitException))
7 .RetryAsync(1, (ex, attempt) => { // retry once
8 _logger.LogError($"Retrying ({attempt}). {ex.Message}"); });
9

10 var circuitBreakerPolicy = Policy
11 .Handle<Exception>()
12 .CircuitBreakerAsync(
13 exceptionsAllowedBeforeBreaking: 5,
14 durationOfBreak: TimeSpan.FromSeconds(10),
15 onBreak: (ex, delay) => { _logger.LogError("Breaking ..."); },
16 onHalfOpen: () => { _logger.LogError("Setting half-open"); },
17 onReset: () => { _logger.LogError("Resetting: successful call"); });
18
19 var bulkheadPolicy = Policy.BulkheadAsync(TotalBulkheadCapacity / TotalEndpoints);
20
21 return PolicyWrap.WrapAsync(timeoutPolicy, retryPolicy, circuitBreakerPolicy,

bulkheadPolicy);
22 }

Program 5.6: Policies used by MVC service for HTTP requests to other
services

tions due to a broken circuit. There is only one retry applied, because
otherwise an application user may need to wait too long for a response
from the MVC service. In case a retry is executed, the attempt is
logged with the previously occurred exception.

• Lines 10 to 17 define a circuit breaker policy. When five consecutive
calls have thrown exceptions, the circuit breaker will break for ten
seconds. In these ten seconds every call will fail without going through
to the receiving service. After this period, the result of the next call
determines if the circuit breaker transitions into open or closed state
again.

• Line 19 defines a bulkhead policy. TotalBulkheadCapacity is the num-
ber of maximum open connections in parallel and is divided by the
total endpoints a service is making calls to. Therefore an unresponsive
endpoint does not lead to a saturation of available connections.

• Line 21 shows how these policies are combined into a policy wrap. The
policy wrap is then used by the MVC service to execute HTTP calls.
When wrapping policies, the order is important: The leftmost policy,
in reading order, wraps the following one, which then again wraps the
following one, etc.

5. Splitting a Monolithic Application 41

The Polly library is also used within the message bus abstraction to handle
event subscribing and publishing in a fault-tolerant way. When an exception
occurs that is related to an unreachable message bus, the action is retried
with exponential backoff.

Coupling between identity service and main service

As a first step to extract the identity service from the main service, the
main service synchronously queries the identity service when it needs user
information, like first and last name or the email address. Synchronous com-
munication is easier to implement because of its similarity to inter-process
calls within a monolith.

But, as explained in Subsection 4.4.1, microservices should only communi-
cate asynchronously in order to achieve a better decoupling – an exception
are services that are only responsible for aggregating data from multiple
other services to render views, like the MVC service. While synchronous
communication decouples services to a certain degree, because it allows in-
dependent development and deployment, only asynchronous communication
can increase an application’s overall resilience and mitigate the impact of un-
available services. To remove the synchronous calls, the required data could
be replicated to the main service. On each change to its data, the identity
service would need to propagate these changes to the main service which
then also updates its data replication.

5.3.3 Migrating the notifications worker service

The last step of the prototypical transformation into a microservices archi-
tecture is the refactoring of the notifications service. The notifications ser-
vice is responsible for sending emails and text messages to volunteers, event
managers, etc. For this purpose it uses third-party software like Twilio and
SendGrid, and sends HTTP requests to these services.

In the initial, monolithic architecture, the notifications service is already im-
plemented as a separate service. It is developed based on the Azure WebJobs
SDK targeting the .NET Framework and is bound to a queue that provides
the messages to be processed. This queue is an Azure Queue Storage, a
product provided by Microsoft within the Azure Cloud.

Since worker services all operate on a shared backlog of work, they are very

5. Splitting a Monolithic Application 42

well suited to scale for improved throughput of work and also for improved
resilience [New15, pp. 220 sq.]. In order to remove the dependency on the
Azure Cloud, the notifications service is refactored into a .NET Core ser-
vice that subscribes to the event bus instead of the Azure Queue Storage.
As an alternative, the worker service could also be developed with Azure
Functions8, which is a serverless compute service; but this would have the
disadvantage of a vendor lock-in to the Microsoft Azure cloud.

5.4 Discussion

This section is evaluating the transformation of the application into a mi-
croservices architecture following an incremental process. Concerning the
development of allReady as an open source application, possible benefits
and drawbacks of a microservices architecture are identified.

The refactoring of allReady from a monolithic architecture into multiple
independent microservices has shown that this is a non-trivial task and re-
quires a very good understanding of the business domain. Although the
application is only moderately large of size, it was possible to split it into
several individual services in order to enable horizontal scaling. The ex-
traction of the MVC service resulted in a relatively high effort, since every
method call has to be exposed via a public REST API. The MVC service
consumes this API via a HTTP client library which also requires additional
error handling. As mentioned, the complexity of the business functionality
is still comprehensible. Therefore, the main service has not been split any
further. This avoids the problem of premature decomposition which might
become a hindrance to further development when requirement changes in-
volve multiple services [New15, pp. 33 sq.].

The consolidation of the authentication and authorization processes reduces
maintenance effort because no custom tokens – which were used for the
mobile app – need to be managed in the database anymore. Moreover, it
eliminates the necessity for duplicated REST API routes; the mobile app as
well as the web application had separate routes since the token validation
was only executed for the mobile-app routes.

The utilization of self-contained JWTs in order to attach the user identity to
the request brings another improvement: because the token contains all nec-
essary information about the user’s identity, no database query is required to
retrieve this information, as opposed to the custom token validation, where

8https://azure.microsoft.com/en-us/services/functions

https://azure.microsoft.com/en-us/services/functions

5. Splitting a Monolithic Application 43

a user lookup was required.

All microservices share a common set of functionality they have to fulfill in
order to accomplish application resilience. They need to enable fault-tolerant
communication (synchronous as well as asynchronous), persist logging infor-
mation, handle access tokens, etc. Microservices have been around for some
time now and from a technological perspective, many supporting libraries
and frameworks have evolved for different languages and environment. Even
though .NET Core is relatively new, useful open source libraries are avail-
able. In particular, Polly reduces the effort to implement fault-handling.
Additionally, IdentityServer4, which is also open source, enables fast imple-
mentation of OAuth 2.0 and OpenID Connect workflows. Several extension
libraries for IdentityServer4 allow quick integration of new services into the
authentication and authorization system.

For open source software, and especially for allReady, it might be difficult
to find voluntary contributors. A complex setup of the entire application
solution and also the large application domain can deter new contributors.
To contribute to allReady, one has to setup the entire application with all
of its dependencies. Setting up a local build environment for the mobile app
is required to manually test the app against the back end. Here, consumer-
driven contracts, as mentioned in Subsection 4.4.3, would help back end
developers to ensure the consumed API is working as intended.

Moreover, by dividing the monolithic application into independent microser-
vices, contributors are not required to have knowledge of the whole archi-
tecture. This lowers the entry barrier and as a result could increase the
number of contributions. For example, if one’s strengths are HTML, CSS
and JavaScript, they can focus on implementing the MVC service without
having to comprehend the complexity of the main service.

When creating new microservices by taking functionality out of the mono-
lith, in theory, the technology can be chosen without restrictions. But if the
team decides to switch to a different technology stack than the one used by
the monolith, code cannot simply be moved but has to be rewritten. This
requires more effort, especially if a library or framework was utilized in the
monolith, for which no technological equivalent exists.

Regarding the attraction of new contributors to the open source applica-
tion, a heterogeneous technology stack brings a wider possible audience.
Using various languages for different services results in a greater coverage of
possible developers’ core skills. In contrast, since the number of languages
a contributor is skilled in is limited, a homogeneous technology stack allows
contributors to switch to other services if it is required. With a heteroge-

5. Splitting a Monolithic Application 44

neous stack – depending on the degree of heterogeneity – this is only possible
to a very limited extent.

Part II

Operations

45

Chapter 6

Running Containerized Microservices
in the Cloud

In order to leverage the full potential of microservices, running the applica-
tion on cloud infrastructure is essential. Since microservices excel at a large
scale, fast provisioning of infrastructure is indispensable. Besides the flexible
provisioning of cloud resources within a very short time, cloud computing
comes with several other advantages. Due to the automatic provisioning of
resources performed by the cloud vendor, companies don’t have to manage
and maintain infrastructure. They can achieve cost savings by only utilizing
the resources needed to handle the current workload. Furthermore, rapid
provisioning of new infrastructure allows to handle exceptional peaks in the
application’s workload. The resulting benefits of cloud computing are not
only limited to hardware: on a software level, for instance, it is important
to maintain software dependencies or apply critical security patches. By
delegating this responsibility to the cloud vendor, companies do not need
in-house expertise.

A key concept to achieve fast provisioning of cloud resources is virtual-
ization. In contrast to common hypervisor-based virtualization, operating
system-level virtualization schedules containers that are a more lightweight
abstraction and share the host’s kernel. This facilitates a smaller resource
footprint but comes with deficiency in isolation. The industry-leading con-
tainer technology is Docker, as 79 percent of all deployments use Docker
as their runtime [Sys19]. A service deployed within a Docker container is
self-contained and bundles all its required dependencies. This isolation al-
lows for loose coupling between containers and therefore, aligns well with a
microservices architecture. Because a container comes with all its dependen-

46

6. Running Containerized Microservices in the Cloud 47

cies, a microservice can be implemented using any framework or program-
ming language. The image-based approach of Docker enables the definition
of infrastructure as code within a Dockerfile.

But Docker doesn’t solve the problem of running a container-based appli-
cations across multiple hosts. This chapter discusses how workloads can be
distributed in a cluster consisting of several servers or virtual machines. Sys-
tems that solve this problem are called container orchestration systems. Due
to the focus of this thesis on Microsoft technology, container orchestration
solutions available in the Azure cloud are evaluated and compared. The ba-
sis for this purpose is the allReady microservices application from Chapter 5
which is operated on each solution suitable for container orchestration.

6.1 Introduction to container orchestration

Container orchestration is the process of managing containers running on
a cluster that spans over multiple nodes. These nodes could be physical
servers or also virtual machines and host a variate of different containers. A
container orchestration platform abstracts away these nodes and enables the
interaction of containers within an application independent of their location.

Khan [Kha17] defines container orchestration platforms as “a system that
provides an enterprise-level framework for integrating and managing con-
tainers at scale.” He names the following seven key capabilities a container
orchestration platform has to implement:

• Cluster state management and scheduling: This part of the orchestra-
tion observes the cluster state and allows other system components to
react to changes by notifying them. It detects when a node in the clus-
ter becomes unavailable and counteracts by rescheduling the affected
containers on healthy nodes in order to ensure the correct number of
containers are running. The goal of scheduling is to balance workload
between the nodes and optimize resource usage. To achieve this, con-
tainer orchestration creates, deletes or moves containers to a different
node, taking into account the resource requirements of a container
(e.g. CPU time or memory). Also, the orchestration has to satisfy
defined constraints or affinities between containers. In order to avoid
starvation of co-hosted containers, it limits the resources available to
a container.

• Providing high availability and fault tolerance: A high fault tolerance
can be achieved by adding redundancy. Multiple redundant replicas

6. Running Containerized Microservices in the Cloud 48

of a service or orchestration component mitigates the problem of a
single point of failure. Implementing the load balancing pattern allows
to share the workload between service replicas. This improves perfor-
mance and reduces the risk of a service instance failing under heavy
load. The orchestration detects when a service or container fails. In
this case the goal is to keep the application in a functioning, albeit
degraded, state.

• Ensuring security: To ensure a high level of security it is inevitable to
keep a container’s attack surface as small as possible. As already men-
tioned, containers on the same node share the host’s kernel. Therefore,
containers with root access are a security risk due to the weaker isola-
tion. In addition, a container orchestration system needs to provide a
component for secret management to store container or service specific
data and restrict access to those.

• Simplifying networking: Docker only enables containers to communi-
cate if they are located on the same host. Since a container orchestra-
tion system spans across multiple nodes it has to provide functional-
ity for containers to communicate regardless of which nodes they are
located on. This requires the nodes to have ports allocated for all con-
tainers they are hosting. At scale this needs to be done automatically.

• Enabling service discovery: Containers are created, deleted and moved
with a high frequency which results in dynamically changing network
locations. To make communication between containers possible, or-
chestration has to provide functionality for service discovery. This can
be solved with the service registry that stores the network location of
all containers. There are two possible approaches to find a contain-
ers location: client-based discovery and server-based discovery. With
client-based discovery the client itself queries the registry and is then
responsible to perform the load balancing. This method introduces a
coupling between client and service registry. With server-based dis-
covery, the client makes request via a dedicated load balancer which
subsequently queries the service registry. This removes the need for
client-specific discovery logic and thus, facilitates a loose coupling be-
tween client and registry. To avoid the need for maintenance, the load
balancer should be part of the orchestration system.

• Making continuous deployment possible: In a microservices architec-
ture, the deployment of a service is a frequent action. Thus, a orches-
trator has to embrace the process of continuous deployment and ease
the handling of a deployment pipeline. Such a pipeline consists of mul-
tiple stages: commit, build, staging, production and feedback loop. A
container orchestrator should support different environments for dif-
ferent stages. Also, it should provide roll-out strategies for upgrading
services without downtime.

6. Running Containerized Microservices in the Cloud 49

• Providing monitoring and governance: An orchestration system should
facilitate extensive monitoring of running containers and the cluster
infrastructure. In particular, this comprises tracing requests, monitor-
ing resource consumption and logging.

6.2 Requirements and design decisions

The goal is to explore the capabilities of the Azure cloud to run containerized
microservices. Azure offers the following products to run containers [Micc]:

• Container Instances: Use cases are infrequent or on-demand workloads.
Container Instances are not designed to run a complete microservices
application. Furthermore, they are not available in all Azure regions
and come with limited available resources, which are 4 cores and 16
GB of RAM for a single container [Mic19c].

• App Service: Also App Service is not a good fit for containerized mi-
croservices because independent services cannot be managed and de-
ployed separately. Additionally, at this time it does not support ap-
plications that consist of multiple containers for production workloads
[Mic19l].

• Batch: Batch is a product to run jobs at a large scale but does not
allow the coordination of microservices.

• Azure Kubernetes Service: AKS is a fully managed Kubernetes clus-
ter. Kubernetes is an open source system for container orchestration.
AKS takes care of the underlying infrastructure Kubernetes is running
on.

• Service Fabric: Service Fabric is a system developed by Microsoft with
the intention of running distributed applications. It allows different
programming models: applications can either be integrated into the
Service Fabric platform by utilizing the provided API and framework,
or they can be deployed within a Docker container that is managed by
Service Fabric.

Only Azure Kubernetes Service and Service Fabric meet the requirements for
orchestrating a microservices application and thus are included in the com-
parison. Both platforms are managed by Azure. This reduces the complexity
of maintaining cluster infrastructure and allows to reduce operational cost.
Both Azure Kubernetes Service and Service Fabric still provide access to the
underlying virtual machines. This can be helpful for debugging scenarios.

6. Running Containerized Microservices in the Cloud 50

Only Service Fabric supports Linux as well as Windows containers. Cur-
rently, Azure Kubernetes Service only supports orchestrating Linux contain-
ers. Microsoft is working on supporting Windows containers but no date for
general availability is communicated [Bro19]. For the evaluation and com-
parison, allReady is adapted to Service Fabric on Linux, Service Fabric on
Windows and Azure Kubernetes Service on Linux.

6.2.1 Requirements on the orchestration level

Each platform provides its own ecosystem and offers a number of solutions
to implement certain tasks. As a limitation, only mature components should
be used for the platform adaption. An exception to this rule is if no alterna-
tives are available. Only then components in preview state are acceptable.
In order to keep the coupling between application and orchestration to a
minimum, orchestration-specific changes to the application are avoided as
far as possible.

Application-level infrastructure components – like message bus, databases
or reverse proxies – should be operated as services in the cluster. A self-
contained architecture simplifies the application’s setup on new environ-
ments; this is particularly beneficial for local development environments. For
production environments, these components could be replaced with solutions
that are hosted by the cloud provider that offers a service-level agreement.
Exemplary infrastructure components utilized by allReady are a RabbitMQ
message bus or Redis databases to share temporary state between service
instances. An exception to these in-cluster operated components are SQL
databases which are used as the primary data storage. In this case an Azure
hosted SQL server is utilized.

Another requirement on the orchestration level is to take the load of HTTPS
termination off the individual microservices. An API gateway should be re-
sponsible for terminating the incoming HTTPS connections and then for-
ward the requests to the respective services.

To keep the comparison’s complexity in a comprehensible state, each con-
tainer orchestration system only uses one type of virtual machine for its
cluster.

6. Running Containerized Microservices in the Cloud 51

1 var redis = ConnectionMultiplexer.Connect(redisConnectionString);
2 var protectionBuilder =
3 services.AddDataProtection(options => {
4 options.ApplicationDiscriminator = "allready-mvc";
5 });
6 protectionBuilder.PersistKeysToRedis(redis, "DataProtection-Keys");

Program 6.1: Simplified code to configure a shared Redis database to store
CSRF tokens.

1 public void Configure(IApplicationBuilder app, ...) {
2 app.UseForwardedHeaders();
3 }
4
5 public void ConfigureServices(IServiceCollection services) {
6 services.Configure<ForwardedHeadersOptions>(options => {
7 options.ForwardedHeaders =
8 ForwardedHeaders.XForwardedFor | ForwardedHeaders.XForwardedProto;
9 options.KnownNetworks.Clear();

10 options.KnownProxies.Clear();
11 });
12 }

Program 6.2: Middleware configuration in Startup.cs to apply forwarded
headers; lines 9 and 10 allow requests from all addresses. In a production
scenario a whitelisting approach is recommended.

6.2.2 Requirements on the application level

Since the notifications service has been reworked using .NET Core, all mi-
croservices are based on .NET Core. In combination with Docker containers,
the modular structure of .NET Core allows to significantly reduce the con-
tainer image size by only including the functionality that is actually used.

Scaling a service within a microservice architecture often requires its in-
stances to share state. A trivial example would be service instances sharing
a user’s session so any instance can serve requests by this user. The following
application level changes are made to support multiple parallel instances:

• Both MVC service and identity service use Cross-Site Request Forgery
(CSRF) tokens to validate forms submitted by the user. ASP.NET
Core provides functionality to manage these tokens in a shared storage.
Both microservices use their own Redis database as a shared storage.
Program 6.1 shows the configuration of Redis as a token store.

6. Running Containerized Microservices in the Cloud 52

• The identity service requires operational data (e.g. issued tokens) to be
shared between its instances. Identity Server 4 itself does not provide
functionality to persist this data to Redis but provides the interface
IPersistedGrantStore that can be implemented for any storage mecha-
nism [AB]. The package IdentityServer4.Contrib.RedisStore1 already
implements this for Redis.

• Since a reverse proxy handles the effort of HTTPS termination and
then forwards requests via HTTP, the information of the original pro-
tocol must be transmitted to a microservice in a different way. Fur-
thermore, information about the client that made the request to the
application might be necessary and needs to be passed on. Reverse
proxies commonly forward this information via HTTP headers. The
receiving services pick up these headers and apply them to the request.
ASP.NET Core provides a middleware to enable this; Program 6.2
shows how to configure the middleware. Per default, forwarded headers
are only accepted from proxies on loopback addresses. In a distributed
application, this restriction has to be removed.

• Services behind a reverse proxy might be publicly accessible via a sub
path relative to the domain. This sub path can be used by the reverse
proxy to determine which microservice it should route the request to.
An example would be www.allready.org/identity/login to access the
identity service’ login route. When the microservice receives requests
from the reverse proxy, it is not aware of its sub path. Therefore, its
routing component will fail trying to find the intended /login route
because the request points to /identity/login. To solve this problem,
ASP.NET Core provides the UsePathBase middleware that strips the
sub path before routing to a controller and also reapplies it when
rendering relative hyperlinks in views. Which sub path the middleware
should process is defined via an environment variable.

1https://github.com/AliBazzi/IdentityServer4.Contrib.RedisStore

https://github.com/AliBazzi/IdentityServer4.Contrib.RedisStore

Chapter 7

Comparison of Azure Kubernetes
Service and Service Fabric

This chapter discusses the differences and similarities of Azure Kubernetes
Service and Service Fabric. At first, the criteria for this comparison are ex-
plained. Then, each criterion is discussed one after another emphasizing the
practical challenges, advantages and, disadvantages each orchestration plat-
form brings. This structure intends to allow the reader to better identify the
differences between the rather comprehensive and complex platforms. Pro-
totypical implementations for each orchestration platform are shown using
the example of the allReady application. This comparison is based on AKS
version 1.14.8, Service Fabric on Linux version 6.5.466.1 and Service Fabric
on Windows version 6.5.664.9590.

7.1 Criteria

The characteristics defined by Khan [Kha17] serve as a basis for the com-
parison and evaluation of the container orchestration systems. However, the
monitoring aspect will not be addressed in this thesis because both plat-
forms can be integrated with numerous monitoring solutions. Including these
would considerably exceed the scope.

As an additional criterion, load tests are run against each cluster. For this
purpose, a workload is generated that approximates a realistic usage. To
achieve this, different user personas with their individual workflows are spec-
ified. The resulting performance metrics are then compared.

53

7. Comparison of Azure Kubernetes Service and Service Fabric 54

etcd

Control Plane

kube-
controller-
manager

kube-scheduler

kube-apiserver

Cloud

Worker Nodes

kubelet

kube-proxy

kubelet

kube-proxy

kubelet

kube-proxy

Figure 7.1: Kubernetes cluster architecture; adapted from [Kub19d]

7.2 Azure Kubernetes Service

Azure Kubernetes Service (AKS) is a product by Microsoft that simpli-
fies deploying the deployment and operation of a Kubernetes cluster on
Azure infrastructure. Kubernetes itself is an open-source orchestration sys-
tem for containers and is managed by the Cloud Native Computing Foun-
dation (CNCF). Kubernetes version 1.0 was release on 21 July 2015 [Vau15]
and has since become the most used container orchestration system [McA+;
Sys19].

7.2.1 Cluster architecture

A Kubernetes cluster consists of two different node types: master nodes
that manage the cluster and worker nodes that run the containers. Fig-
ure 7.1 gives an overview of the Kubernetes architecture. A cluster’s master
nodes are called the control plane; this control plane consists of the following
components [Kub19j]:

• kube-apiserver: This central component provides the API to interact
with the cluster. It is used by all other Kubernetes components for
operations on the cluster state.

• etcd: etcd is a highly-available key-value store that allows to be dis-
tributed across nodes. Kubernetes uses etcd to persist the entire cluster

7. Comparison of Azure Kubernetes Service and Service Fabric 55

state and configuration. On top of that, different Kubernetes compo-
nents use etcd’s watch functionality to listen for state changes [Etc19].

• kube-scheduler: The smallest logical resource in Kubernetes is called a
pod and consists of at least one container. When a new pod is created,
kube-scheduler decides on which node it will be scheduled. Several
factors are taken into account in this decision-making process. Some
examples are the resource utilization of nodes, constraints in required
resources or affinity between pods.

• kube-controller-manager: This component runs controllers which man-
age a certain aspect of the cluster’s state. When a state change is de-
sired, it uses the kube-apiserver to accomplish that. For instance, the
Replication Controller ensures that the correct number of pod repli-
cas are running. Another example is the Node Controller that holds a
virtual representation of each node and keeps it in sync with the cloud
provider. That way, it can detect if a node has been deleted when it
becomes unresponsive.

Worker nodes within the Kubernetes cluster are responsible for running
the pods encapsulating containers. The workload coordination is done by
the control plane. Therefore, it instructs the worker nodes which pods they
need to run. A worker node has the following components:

• kubelet: This is the agent that manages the running pods. Basically,
it communicates with the control plane via the kube-apiserver which
provides the kubelet with a set of pod specifications. The kubelet is
responsible that all containers described in the pod specifications are
in a healthy state.

• kube-proxy: This network proxy is used to enable communication be-
tween pods within the cluster. An arbitrary number of pods can form
a service that is reachable via a cluster IP address. To accomplish this,
kube-proxy manages network rules using iptables [Kub19q].

• Container runtime: Besides the industry leading Docker runtime, Ku-
bernetes also supports containerd1, rkt2 and CRI-O3. Additionally,
Kubernetes specifies the Container Runtime Interface (CRI). The CRI
enables the usage of any container runtime that implements the inter-
face.

Complimenting the above components, addons provide further cluster func-
tionality. Some exemplary addons are: a DNS server to simplify communi-

1https://containerd.io
2https://coreos.com/rkt
3https://cri-o.io

https://containerd.io
https://coreos.com/rkt
https://cri-o.io

7. Comparison of Azure Kubernetes Service and Service Fabric 56

cation with services, a dashboard UI to manage Kubernetes resources, tools
for container resource monitoring, or a central log store for container logs.

AKS is a platform that provides a managed Kubernetes cluster and is avail-
able for production usage since June 2018 [Bur19]. It takes on the manage-
ment of the control plane and provides high availability by replicating the
master nodes. It is not possible to directly access the control plane. However,
AKS provides an interface that allows upgrading Kubernetes to a newer ver-
sion or updating the number of worker nodes. A worker node is a virtual
machine in the Azure cloud. Currently, AKS supports Kubernetes version
1.14.8 and thus is two minor versions behind the most recent Kubernetes 1.16
release. Even though Kubernetes supports different container runtimes, in
an AKS cluster the only available runtime is Moby. Moby is the open source
upstream project of Docker and therefore runs Docker containers [Mic19f].

7.2.2 Platform model

The Kubernetes API follows a declarative approach. It uses Kubernetes
objects for all kinds of API resources. These objects represent the complete
state of the cluster and are persisted in the etcd store. Kubernetes objects
are declared in a YAML manifest file. In order to update the cluster state,
a Kubernetes object is manipulated and then sent to the Kubernetes API
with the intent to update the state.

To give an overview how Kubernetes objects work, the fundamental objects
to create a replicated service are explained:

• Pod: As already mentioned above, the smallest building block in Ku-
bernetes is a pod which serves as a unit of deployment. In most use
cases, it consists of a single container and represents a concrete mi-
croservice. To run multiple instances of a microservice, the pod can be
replicated using a deployment object explained below. Additionally,
it is also supported to bundle multiple containers within one pod if
they require tight coupling. In this case, all containers of a pod are
scheduled on the same node and share resources [Kub19n].

• Deployment: A pod itself should not be managed manually because if
it fails, it won’t be rescheduled. Generally, a pod should be considered
ephemeral. In order to ensure that a certain number of pod replicas are
running in the cluster, a deployment object can be used. The decla-
ration of a deployment contains the pod specification and the number
of replicas of this pod. A deployment is also used to roll out updates
to the pods’ state, e.g. when the container image has been updated;

7. Comparison of Azure Kubernetes Service and Service Fabric 57

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: allready-identity
5 spec:
6 replicas: 3
7 selector:
8 matchLabels:
9 app: allready-identity

10 template:
11 metadata:
12 labels:
13 app: allready-identity
14 spec:
15 containers:
16 - name: allready-identity
17 image: allreadyacr.azurecr.io/allready.identity@sha256:e375d7...
18 ports:
19 - containerPort: 80
20 env:
21 - name: BasePath
22 value: /identity

Program 7.1: A deployment object in YAML format describing the allReady
identity service; line 6 defines the number of pod replicas, lines 14 to 22 show
the definition of the pod object that consists of a single container, line 13
(highlighted in blue) defines a label which is later matched by the service
object in Program 7.2

or to create more replicas in case of an increasing load [Kub19f]. Pro-
gram 7.1 shows the declaration of a simplified deployment object.

• Service: Each pod has its own IP address assigned but since pods
are created and removed frequently, a mechanism is required that al-
lows pods to be easily discoverable. In Kubernetes a service object
abstracts a set of pods and keeps track of their network locations. It
acts as an intermediary to provide a discovery mechanism to other mi-
croservices without them requiring knowledge about the specific pods.
In other words, microservices send requests to a service object which
then load balances the request between the abstracted pods. To de-
fine the cohesiveness between service and pods, so called label selectors
are used [Kub19q]. This allows a service to span multiple deployments.
Program 7.2 shows the declaration of a service object.

7. Comparison of Azure Kubernetes Service and Service Fabric 58

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: allready-identity
5 spec:
6 type: ClusterIP
7 ports:
8 - port: 80
9 selector:

10 app: allready-identity

Program 7.2: A service object in YAML format that enables the allReady
identity service to be discovered within the cluster; line 9 and 10 show the
label selector that matches the pods created by the deployment from Pro-
gram 7.1

7.3 Azure Service Fabric

Service Fabric is a distributed platform that facilitates the development
of applications following a microservices architecture. It is developed by
Microsoft and used internally to operate infrastructure services in the Azure
cloud. Furthermore, Service Fabric is the underlying foundation for several
Azure products like SQL Server, Cosmos DB or Cortana.

In 2018, Microsoft made the platform available as open source; the develop-
ment is still managed by Microsoft’s Service Fabric team [Ser18]. Although
community contributions are allowed, only a total of 64 commits have been
made to the public GitHub repository since it became open source [Git].

Service Fabric supports several different programming models to develop
distributed applications. The first two of these approaches are deeply inte-
grated into the Service Fabric platform and its API [Mic17f]:

• Reliable Services: The Service Fabric platform provides the Reliable
Services framework to implement stateless and also stateful services.
The advantage of stateful services is that they don’t require an external
storage to persist their state because state is persisted within the ser-
vice itself. To accomplish this, Service Fabric offers Reliable Collections
which replicate state across the cluster and allow high availability.

• Reliable Actors: Based on Reliable Services, the Reliable Actors frame-
work implements the actor design pattern.

7. Comparison of Azure Kubernetes Service and Service Fabric 59

Application Model

Reliable, Scalable Applications

Native and Managed APIs
Declarative Application Description

Management
Subsystem
Deployment,

Upgrade
and Monitoring

Communication
Subsystem

Reliability Subsystem Hosting and
Activation

Testability
Subsystem

Service discovery

Reliability, Availability,
Replication, Service

Orchestration Application Lifecycle

Fault Inject,
Test in

Production

Federation Subsystem
Federates a set of nodes to form a consistent scalable fabric

Transport Subsystem
Secure point-to-point communication

Figure 7.2: Service Fabric cluster architecture [Mic17e]

• Containers: Service Fabric is also able to orchestrate containers. This
does not require the service to integrate any Service Fabric related
logic and therefore, decouples the operated microservices from the or-
chestration platform.

• Guest executables: In addition, Service Fabric can run any executable.
These executables don’t use the Service Fabric API.

This thesis focuses on the orchestration of platform-independent, container-
based microservices; therefore, Reliable Service, Reliable Actors and guest
executables won’t be discussed in detail.

7.3.1 Cluster architecture

Service Fabric can be deployed to the Azure cloud and also to on-premises
infrastructure. Its architecture differs from Kubernetes, as the nodes are
not distinguished between master nodes and worker nodes. All nodes are
equal in regards to the running Service Fabric components. As illustrated in
Figure 7.2, a node is described by the following components – often called
subsystems – that build on each other [Kak+18]:

• Transport subsystem: The underlying component for all other subsys-
tems is the transport subsystem. This Service Fabric internal channel
secures the communication of the nodes within the cluster and also
the communication between cluster and clients. To prevent unautho-
rized access, the transport subsystem either uses X509 certificates or

7. Comparison of Azure Kubernetes Service and Service Fabric 60

Windows Security.
• Federation subsystem: Service Fabric has the goal to enable strong

consistency in its foundation and thus remove this complexity from
the application layer on top of it. Built atop of the transport sub-
system, the federation subsystem implements the detection of node
failure, leader election and routing. A peculiarity of Service Fabric’s
federation subsystem is that it decouples the detection of a failing node
from the final decision about the failure. This solves the problem of
contradictory decisions in a distributed system. In order to detect fail-
ure, the federation subsystem utilizes a virtual ring, called SF-Ring.
All nodes are mapped onto this ring. Each node monitors a number
of its predecessors and successors in regards to their order in the ring.
These tracking relationships are bidirectional, meaning in a pair of
nodes both monitor one another. In this monitoring process, a node
sends heartbeat messages – so called lease renewal requests – to all
its monitors, and then receives back the acknowledgement. Whether
a node detected as failed is excluded from the ring, is decided by the
arbitrator group. This group is formed by a number of independent
nodes. In order to confirm a node failure, a quorum in the arbitrator
group must acknowledge it.

• Reliability subsystem: The three main components of the reliability
subsystem are: the failover manager, the placement and load balancer,
and the naming service. The failover manager is responsible for creat-
ing and upgrading services. It gets informed about each node’s resource
utilization and communicates with the placement and load balancer
(PLB). The creation of a new service replica is initiated by the failover
manager, and then delegated to the PLB which determines the node
the replica is created on. The PLB takes into account several factors,
such as constraints or affinity. In case of a node failure, the underly-
ing arbitrator notifies the failover manager. Subsequently, the failover
manager initiates the replica recreation process. The naming service
is responsible to resolve a service name to its network location.

• Management subsystem: This subsystem provides an interface to in-
teract with the cluster and change its state. Within a Service Fabric
cluster, microservices are deployed, updated or removed using the clus-
ter manager component. To manage an application’s lifecycle across
the cluster, it interacts with several subsystems: it instructs the failover
manager to create new services, or delegates the service monitoring to
the health subsystem. Another component of the management subsys-
tem is the health manager that aggregates all health information into
a centralized store.

• Hosting subsystem: On each node in the cluster, the hosting subsystem
is executed. Upon instructions from the cluster manager, it manages

7. Comparison of Azure Kubernetes Service and Service Fabric 61

the lifecycle of a service on the specific node it is operating on.
• Communication subsystem: The communication subsystem provides

the naming service that allows services to resolve other services’ loca-
tion.

• Testability subsystem: This component provides tools for testing ap-
plications. By simulating faults of different kinds, the behavior of de-
graded applications can be evaluated.

To visualize a cluster, the Service Fabric Explorer is provided. This is a
web application that shows health information about infrastructure and mi-
croservices. It also supports a small set of administrative operations.

7.3.2 Platform model

On top of these subsystems, Service Fabric provides a declarative approach
to deploy microservices. This is called the application model. The model
is specified using manifest files in XML format. The logical architecture
of the application model differentiates between applications and services.
Program 7.3 and Program 7.4 are simplified example manifests for an ap-
plication type and a service type respectively.

An application is composed of several services and also has to specify which
service instances to create when the application is initialized – these are so
called default services. If a service type is not specified as a default service,
it has to be created manually. However, since most services should always
be available and a manual creation is not preferable with regard to scalabil-
ity, the explicit declaration of default services is mandatory. This results in
verbose manifest files that are harder to maintain.

Both application type as well as service type allow multiple co-existing in-
stances in a cluster. Service instances can be scaled easily by updating the
replica count; in order to increase the instances of an application type, new
instances with different names have to be deployed one by one.

A service runs independently of other services and consists of three parts: a
code package, a configuration package and a data package. The code package
specifies the service entrypoint that is executed at startup; for containerized
services, this points to the Docker image. Additionally, a setup entrypoint
can be specified which is commonly used to execute scripts with higher
privileges. The configuration and data packages can be ignored because a
container is self-contained and must not depend on external data. To inject

7. Comparison of Azure Kubernetes Service and Service Fabric 62

1 <ApplicationManifest ApplicationTypeName="Identity.SFType" ...>
2 <Parameters>
3 <Parameter Name="BasePath" DefaultValue="" />
4 </Parameters>
5 <ServiceManifestImport>
6 <ServiceManifestRef ServiceManifestName="IdentityPkg" ... />
7 <EnvironmentOverrides CodePackageRef="Code">
8 <EnvironmentVariable Name="BasePath" Value="[BasePath]" />
9 </EnvironmentOverrides>

10 <Policies>
11 <ContainerHostPolicies CodePackageRef="Code">
12 <RepositoryCredentials AccountName="allreadyacr" Password="*" ... />
13 <NetworkConfig NetworkType="Open" />
14 </ContainerHostPolicies>
15 </Policies>
16 </ServiceManifestImport>
17 <DefaultServices>
18 <Service Name="Identity" ServiceDnsName="allready-identity" ...>
19 <StatelessService ServiceTypeName="IdentityType" InstanceCount="3">
20 <SingletonPartition />
21 </StatelessService>
22 </Service>
23 </DefaultServices>
24 </ApplicationManifest>

Program 7.3: A simplified application manifest in XML format describing
parts of the allReady identity service; line 19 defines the number of service
instances, line 6 (highlighted in blue) includes the service manifest from Pro-
gram 7.4, lines 3 and 8 (highlighted in orange) show how a parameter is
passed through to the included service manifest

configuration parameters into a container, environment variables are used.

The declarations of application type and service type are tightly coupled.
To create a new service type it has to be specified in the service manifest. In
addition, the service type must be imported into the application. If different
teams are responsible for the services within a single application manifest,
they have to coordinate updates to the application manifest. Moreover, no
clear ownership of the application manifest is given and further problems
occur if teams use different source code repositories. Also, if a failure happens
during a service upgrade, the whole application upgrade is rolled back and
blocks upgrades of other services within the application [Mic19g]. Due to this
tight coupling between application and service manifest, it is advisable to
declare a microservice on the application level. In other words, an application
type is equivalent to a microservices.

Since the application model supports several programming models, its struc-

7. Comparison of Azure Kubernetes Service and Service Fabric 63

1 <ServiceManifest Name="IdentityPkg" ...>
2 <ServiceTypes>
3 <StatelessServiceType ServiceTypeName="IdentityType" ... />
4 </ServiceTypes>
5 <CodePackage Name="Code" ...>
6 <EntryPoint>
7 <ContainerHost>
8 <ImageName>allreadyacr.azurecr.io/allready.identity@sha256:e375d7...
9 </ImageName>

10 </ContainerHost>
11 </EntryPoint>
12 <EnvironmentVariables>
13 <EnvironmentVariable Name="BasePath" Value="" />
14 </EnvironmentVariables>
15 </CodePackage>
16 <Resources>
17 <Endpoints>
18 <Endpoint Name="IdentityTypeEndpoint" Protocol="http" UriScheme="http"
19 Port="80" CodePackageRef="Code" />
20 </Endpoints>
21 </Resources>
22 </ServiceManifest>

Program 7.4: A simplified service manifest in XML format describing parts
of the allReady identity service; line 1 defines the name of service that is
referenced by the application manifest in Program 7.3, line 13 (highlighted
in orange) shows the definition of an environment variable that is overridden
by the application manifest

ture is not ideally aligned for containerized microservices. In order to pass a
configuration variable from the build pipeline to the container, the variable
must be passed through several layers of the manifests: the service manifest
defines an environment variable, the application manifest defines an over-
ride for this environment variable, and to set this override, an application
parameter is specified. Furthermore, the container image and its repository
are specified in the service manifest, while the repository credentials are
specified in the application manifest.

7.3.3 Differences between Linux and Windows clusters

Service Fabric supports clusters of Linux or Windows nodes, which only
allow to run Linux or Windows containers respectively. A combination of
both node types is not possible in a single cluster. If a microservice is im-
plemented with the .NET Framework, the usage of Windows containers is
mandatory. Although the .NET Framework is not an optimal solution for a

7. Comparison of Azure Kubernetes Service and Service Fabric 64

microservice, it might be the case in a lift-and-shift scenario or when porting
a service – as done in Subsection 5.3.3 – would be too expensive. Contrary
to the .NET Framework, .NET Core doesn’t require Windows containers
and since allReady is entirely based on .NET Core, it can be deployed to
Linux and Windows clusters.

Although Service Fabric supports container orchestration on Linux and Win-
dows, differences in features have to be taken into account [Mic18b]. Linux
clusters lack the following features:

• Service Fabric on Linux doesn’t provide a reverse proxy out of the box.
• Linux clusters are only supported in the Azure cloud. On-premises

installations are not supported.
• The testability subsystem is not available on Linux clusters.
• The EventStore, an additional monitoring tool, is not available on

Linux clusters.
• It is not possible to use Reliable Collections within a Docker container

in a Linux cluster. Contrary to the official documentation [Mic18a],
Reliable Collections work on all Windows clusters regardless of their
OS version [McK19].

Disadvantages of Windows clusters are mostly due to the peculiarities of
Docker for Windows. On a Windows cluster, the operating system of a node
and a container must be compatible. In an optimal case these two are equal;
this allows to run containers using process isolation, sharing the host ker-
nel. But Service Fabric can also run containers that are built using an older
OS version. This is achieved with Hyper-V isolation where each container
runs inside its own virtual machine. In other words, process isolation en-
ables better resource utilization. These circumstances result in the following
drawbacks:

• In order to make use of process isolation, every container requires to
be rebuilt when the cluster OS is updated.

• This problem is also evident when public container images are used
because most of them are not rebuilt for newer Windows versions. As
a result, developers cannot use the public image and must create and
manage such images themselves.

• Considering the allReady application, some microservices require a
Redis database to store state. On Windows this creates a problem
because the development of Redis for Windows has been discontinued.
The latest version is 3.2.100 and was released in 2016 [Mic16]. An
alternative to Redis would be to store state in Reliable Collections

7. Comparison of Azure Kubernetes Service and Service Fabric 65

but this would make it difficult to compare the performance with the
other orchestration platforms. To ensure equal conditions for the load
tests, every platform uses Redis version 3.2. Although this version is
not recommended for production use anymore, the type of data storage
is not a factor in load testing.

7. Comparison of Azure Kubernetes Service and Service Fabric 66

7.4 Cluster state management and scheduling

In a scalable microservices application there are many independent moving
parts resulting in a high density of services on a cluster node. Each service
consumes resources, like CPU time or memory. To mitigate resource star-
vation and provide a service with enough resources to function properly,
resource governance is required. Its purpose is to limit a microservice’ re-
source consumption and thus isolating it from other microservices co-existing
on the same node. Resource governance also improves isolation on a higher
logical level: in a multi-tenant cluster it can restrict the resources available
to each customer. Another use case could be to run the development and
the QA environment in the same cluster but isolate them by limiting their
resources.

The consumption of resources is the basic metric used by an auto-scaling
mechanism. Available resources on the cluster nodes indicate to the orches-
tration platform when to provision new nodes or remove existing ones. More-
over, the average consumption of all instances of a microservice indicates
when to increase or decrease the amount of instances. Scaling is possible
on two axis: vertically by increasing the resources a service is allowed to
use, and horizontally by increasing the number of instances. One reason to
apply the microservices pattern is to enable horizontal scaling. The smaller
a service is, the more efficient horizontal scaling works. This section focuses
on scaling an application horizontally.

In order to restrict which services are placed on which nodes, constraints are
utilized. These can be static constraints that indicate a service’ requirements
to a node, like an attached disk. Constraints can also by dynamic, i.e. they
depend on other services because they either require to run on the same
node or must not be scheduled on the same node.

This section also discusses how to manage state within containerized ser-
vices. Using the example of a Redis database, it is demonstrated how state
can be persisted beyond the lifecycle of a container. The deployment of
this Redis database consists of two instances: a master and a replica with
both instances continuously persisting their data. The combination of a sin-
gle master and a single replica is not suited for a production environment
but enough to prototypically demonstrate the implementation of stateful
microservices.

7. Comparison of Azure Kubernetes Service and Service Fabric 67

7.4.1 Azure Kubernetes Service

Kubernetes supports up to 300 000 containers on a cluster with a maximum
of 5000 nodes [Kub19b]. AKS further limits this number to a maximum of
800 nodes, each running no more than 250 pods [Mic19b]. In order to dy-
namically scale the number of nodes in a cluster, Azure Kubernetes Service
utilizes the functionality of virtual machine scale sets (VMSS). A virtual
machine scale set is a logical group of virtual machines of the same type
and provides management capabilities to increase or decrease the number of
instances. A VMSS represents a so called node pool.

AKS supports clusters consisting of multiple node pools. This allows to have
multiple VMSS with different capacities, which can be used to optimize per-
formance. For example, microservices that have high memory consumption
can be scheduled on memory-optimized virtual machines.

Resource governance

Kubernetes uses a fine-grained declarative approach on container level to
predefine a microservice’ resource requirements. Hereby, a container specifies
the minimum amount of CPU time or memory it requires, this is called a
resource request. Additionally to these two basic resource types, it is also
supported to specify the number of huge pages4. If a pod contains more
than one container, the container requirements are added up. These metrics
are then used by the kube-scheduler to determine on which node the pod
will be scheduled. It is also recommended that a container specifies an upper
limit for its resource consumption. In case it exceeds this limit, the container
might be terminated [Kub19k].

The concept of namespaces within a cluster allows to group microservices,
more precisely their API resources, into logical areas, e.g. to run development
and QA environments side-by-side, or to separate tenants in a multi-tenant
cluster. To mitigate the risk of resource starvation, these namespaces can be
restricted in their available resources [Kub19k].

4A huge page is a chunk of memory that is larger than the default page size.

7. Comparison of Azure Kubernetes Service and Service Fabric 68

1 apiVersion: autoscaling/v1
2 kind: HorizontalPodAutoscaler
3 metadata:
4 name: allready-identity
5 spec:
6 maxReplicas: 10
7 minReplicas: 2
8 scaleTargetRef:
9 apiVersion: apps/v1

10 kind: Deployment
11 name: allready-identity
12 targetCPUUtilizationPercentage: 70

Program 7.5: An HPA object in YAML format describing how the deploy-
ment object of the allReady identity service (highlighted in blue) is scaled.

Auto-scaling

In a Kubernetes cluster two kinds of scaling mechanisms on pod level are pos-
sible: the horizontal pod autoscaler (HPA) and the vertical pod autoscaler
(VPA). The VPA adjusts the resource requests and limits of a pod but since
AKS only provides support for the HPA, vertical scaling won’t be discussed
further.

A horizontal pod autoscaler is bound to a replication controller – for exam-
ple, in Program 7.5 this replication controller is a deployment object. The
HPA periodically checks the CPU utilization of all targeted pods within
the replication controller (the default time interval is 15 seconds). Based on
the targeted utilization, it calculates how many instances are required to
optimally achieve this target. If the calculated instance count differs from
the current instance count, the HPA instructs the deployment to increase or
decrease the number of pod replicas. The new beta version of the HPA also
allows to scale based on memory or custom metrics [Kub19g].

Storage

Oftentimes it is inevitable to require state within a microservices. In regards
to the allReady application, examples are the Redis databases that are used
by the Identity and MVC services. In order to not lose the entire data when a
Redis pod is rescheduled, Redis provides the persistence feature. This allows
to store the data on disk. When running inside a container this requires the
orchestration platform to mount the Docker volume to the underlying cloud

7. Comparison of Azure Kubernetes Service and Service Fabric 69

1 apiVersion: apps/v1
2 kind: StatefulSet
3 spec:
4 replicas: 2
5 template:
6 spec:
7 containers:
8 - name: redis
9 image: redis:3.2

10 volumeMounts:
11 - name: data
12 mountPath: /data
13 volumeClaimTemplates:
14 - metadata:
15 name: data
16 spec:
17 accessModes: ["ReadWriteOnce"]
18 resources:
19 requests:
20 storage: "10Gi"

Program 7.6: A stateful set object describing the replicated Redis setup
used by the allReady MVC service; line 19 sets the access mode to
ReadWriteOnce which means only a single pod replica can access the per-
sisted volume (mandatory properties .spec.template.metadata.labels and
.spec.selector.matchLabels removed for the sake of brevity)

infrastructure [Kub19l].

In Kubernetes this is accomplished by using a persistent volume that maps
to any kind of cloud storage. AKS allows to dynamically provision persis-
tent volumes by creating so called persistent volume claims (PVC). These
instruct the cloud provider to provision storage according to the specifica-
tion in the PVC. Persistent volume claims and persistent volumes form a
1-to-1 relationship.

In order to operate Redis in a highly available and fault-tolerant way, mul-
tiple Redis instances are deployed that synchronize their state; to simplify
this, a stateful set is used. A stateful set is a Kubernetes object that, similar
to a deployment object, allows to specify the number of pod replicas that
must be running in the cluster. Other than a deployment, it also provides
a declarative approach to create a PVC for each pod and attach the pro-
visioned storage to the container. The storage can be configured to remain
available when a pod is terminated. Thus, it can be attached again when the
pod is rescheduled. Program 7.6 shows a simplified declaration of a stateful
set within the MVC microservice.

7. Comparison of Azure Kubernetes Service and Service Fabric 70

1 apiVersion: apps/v1
2 kind: StatefulSet
3 spec:
4 replicas: 2
5 template:
6 metadata:
7 labels:
8 app: mvc-redis-ha
9 spec:

10 affinity:
11 podAntiAffinity:
12 requiredDuringSchedulingIgnoredDuringExecution:
13 - labelSelector:
14 matchLabels:
15 app: mvc-redis-ha
16 topologyKey: kubernetes.io/hostname

Program 7.7: Part of a stateful set object declaration specifying an anti-
affinity between its pod replicas. The self-reference is accomplished by
the label selector app=mvc-redis-ha in line 15 matching its own label in
line 8 (removed mandatory properties .spec.template.metadata.labels and
.spec.selector.matchLabels for the sake of brevity)

Constraints and affinity

In a Kubernetes cluster, arbitrary labels can be assigned to nodes, e.g. the
disk type attached to a node. By using the node selector property, a pod
can define on which nodes it is allow to run. For example, it can require the
node to have an SSD attached. These node selectors are hard requirements.
Furthermore, a pod can also specify an affinity (or anti-affinity if an aversion
is required) to other pods. This can either be a hard or a soft requirement,
where a soft requirement indicates a preference but does not need to be
strictly obeyed by the kube-scheduler [Kub19a].

By incorporating anti-affinity between the Redis pods into the stateful set,
it is achieved that only one Redis replica is scheduled on a single node. This
is important in order to improve fault tolerance. Program 7.7 demonstrates
how this anti-affinity between replicas of the same pod definition is specified.

7.4.2 Service Fabric

Service Fabric does not define an upper limit as to how many containers
can be orchestrated or how many nodes a cluster can contain. Ramaswamy

7. Comparison of Azure Kubernetes Service and Service Fabric 71

[Ram17] demonstrated that Service Fabric is capable of scheduling over one
million containers.

Just like AKS, Service Fabric utilizes virtual machine scale sets to provi-
sion and manage nodes in the cluster. Service Fabric also supports clusters
consisting of multiple node pools so that microservices can be scheduled on
virtual machines that optimally support their resource requirements.

Resource governance

In comparison to AKS, Service Fabric has a very similar strategy on how
to handle resource governance. The limits of CPU cores and memory are
specified on the service level. These metrics are also used to determine on
which node a new service is scheduled. Additionally, container resources can
be limited by a wide variety of metrics: swap memory, memory reservation,
maximum IO rate (operations per second) for read and write, maximum
IO bandwidth (in bytes), block IO weight, disk quota, kernel memory (on
Linux) or the size of /dev/shm (on Linux) [Micl].

Other than Kubernetes, Service Fabric does not implement the concept of
namespaces. This complicates the resource governance for multiple tenants.
Even though separate application instances can be created for each tenant,
constraining all the moving parts of a microservices application individually
is cumbersome and hard to maintain.

Auto-scaling

Service Fabric allows an application to scale its service instances by defining
a lower and upper threshold for a metric. In a specified interval, it checks the
metric by considering the average value from all instances. In case this av-
erage lies outside the thresholds, it decreases or increases the instance count
by a specified number. When the instance count is changed, Service Fabric
checks the thresholds again after the next interval has elapsed [Mic18d]. If
the added instances are still not enough to handle the workload, failures
might occur.

Service Fabric limits the maximum number of instances that can be created
for a service. This limit corresponds to the number of nodes within a cluster.
In other words, at most one instance of a service can run on a particular node
[Mic19j]. Although it would be possible to create another identical service

7. Comparison of Azure Kubernetes Service and Service Fabric 72

with multiple instances and therefore double the instance count, it is not
possible to assign the same DNS name to both identical services. Since for the
load tests the allReady application is only deployed on a three node cluster,
Service Fabric’s auto-scaling mechanism would only scale a microservice
between one and three instances. Furthermore, an instance count of one
would not ensure fault-tolerance. Therefore, the auto-scaling mechanism is
not implemented due to the lack of benefit.

Concerning resource governance, the restriction of one service instance per
node can also become a problem on small clusters: restricting a service’
available resources too much can rapidly increase the need for more nodes,
resulting in higher financial costs.

Storage

To enable Redis to persist its data, the docker volume has to be mounted.
Service Fabric provides a so called Azure Files volume driver that attaches an
Azure Files5 storage to the Docker volume. This volume driver is built atop
of a Docker volume plugin. But this Docker volume plugin does not support
a high rate of IO operations and would therefore introduce high latency
[Doc18]. Moreover, Service Fabric does not provide a volume driver to attach
an Azure Disk, which is suited for high IO rates, to a Docker volume [Jan19].
As a result, a manual approach is required to achieve persistence on a disk.

1 <Volume
2 Source="/datadisks/disk1/appdata/MVC.SFType/MVC.RedisReplica"
3 Destination="/data" />

Program 7.8: Attaching the Docker volume /data to a directory in the vir-
tual machine’s data disk. /datadisks/disk1 points to the disk, /appdata is a
sub directory defined by convention, MVC.SFType and MVC.RedisReplica are the
names of the application and the service respectively

A VMSS allows to specify a configuration for a data disk. To each virtual
machine in the scale set, a data disk will be attached according to the con-
figuration. After formatting the data disk, it can be attached to the Docker
volume of the Redis container. Program 7.8 shows how the data disk is at-
tached to the Docker volume of a Redis replica. A downside of this method
is that a disk is bound to the virtual machine and not to the container;
therefore, every virtual machine requires a disk to run the container. An-
other disadvantage is that every service running on the virtual machine has

5https://docs.microsoft.com/en-us/azure/storage/files/storage-files-introduction

https://docs.microsoft.com/en-us/azure/storage/files/storage-files-introduction

7. Comparison of Azure Kubernetes Service and Service Fabric 73

1 <SetupEntryPoint>
2 <ExeHost>
3 <Program>selector.cmd</Program>
4 <Arguments>MVC.SFType/MVC.RedisReplica</Arguments>
5 <WorkingFolder>CodePackage</WorkingFolder> <!−− script location −−>
6 </ExeHost>
7 </SetupEntryPoint>
8 <EntryPoint>
9 <ContainerHost>

10 <ImageName>allreadyacr.azurecr.io/allready.mvc.sfwin.redis</ImageName>
11 <Commands>--slaveof,allready-mvc-redis,7379</Commands>
12 </ContainerHost>
13 </EntryPoint>

Program 7.9: Definition of the service manifest entrypoints to deploy a Redis
replica

access to this data. In order to not interfere with other services following
this approach, each service creates it’s own directory. All developers are re-
quired to follow this convention but since it is not possible to enforce this
convention, problems might occur.

The directory is created using an entrypoint script. Program 7.9 shows two
entrypoints in the service manifest with the following characteristics:

• Line 3 specifies the selector.cmd script that is run before starting the
container.

• The argument on line 4 passes the directory to be created by the script.
• Line 10 defines the custom-built Redis image for Windows; on a Linux

cluster, the public Docker image redis:3.2 is used.
• Line 11 shows the command that is passed to the docker container:

here the container is deployed as a Redis replica. This replica in-
stance connects to the Redis master using the master’s DNS name
allready-mvc-redis, and keeps their states synchronized. The service
manifest of the Redis master looks similar. It is important to not use
any whitespace characters within the XML tag since this would cause
Service Fabric to pass the arguments incorrectly to the Docker con-
tainer.

• Remark: --slaveof is used due to the older Redis version; in newer
Redis versions this flag is named --replicaof.

Because higher privileges are required to create directories, a dedicated setup
entrypoint executes the script as Service Fabric administrator. Depending

7. Comparison of Azure Kubernetes Service and Service Fabric 74

on whether the cluster consists of Linux or Windows nodes, either a bash
script (Program 7.10) or a batch script (Program 7.11) is executed. The
selector.cmd script (Program 7.12) delegates the setup to the correct script
depending on the operating system it is executed on. Service Fabric requires
the explicit declaration of the #!/bin/bash shebang; if not defined, the script
will fail because the default shell /bin/sh is not installed on a Service Fabric
node.

1 #!/bin/bash
2 dir="$1"
3 volume="/datadisks/disk1"
4 absPath="$volume/appdata/dir"
5 sudo mkdir -p "$absPath"

Program 7.10: setup.bat

1 set dir=%1
2 set vol=F:
3 if not exist %vol%\appdata\%dir% (
4 mkdir %vol%\appdata\%dir%
5)

Program 7.11: setup.sh

1 #!/bin/bash
2 :<<BATCH
3 @echo off
4 echo Running setup.bat
5 call setup.bat %*
6 exit /b
7 BATCH
8 echo "Running setup.sh"
9 sudo ./setup.sh "$@"

Program 7.12: The selector.cmd script to run the correct setup script de-
pending on the host OS: on Linux the here-document instruction (<<) reads
multiple lines into stdin until the BATCH mark on line 7 is reached but does
not interpret this batch code; on Windows line 2 is ignored due to the leading
colon, thus the script starts at line 3 and runs until it explicitly exits at line
6; this file must use Linux line endings

Constraints and affinity

Just like Kubernetes, Service Fabric also allows to add static tags to a node.
These tags are called node properties and can be used in combination with
placement constraints to restrict the scheduling of services.

By declaring affinity, services can be placed on the same nodes. Other than

7. Comparison of Azure Kubernetes Service and Service Fabric 75

Kubernetes, Service Fabric does not support a concept to specify an aver-
sion or anti-affinity between services. This means there is no guarantee that
all Redis instances (master and replica) are located on different virtual ma-
chines. In case all instances are scheduled on the same host, a failure in this
virtual machine would cause the entire Redis database to become unavail-
able.

Another problem is that the provisioned disks are not bound to the ser-
vice instance but rather to the virtual machine. In case a Redis replica is
rescheduled to another node, the newly created container does not have
access to the data anymore. This issue is mitigated by Redis internal repli-
cation mechanism, which allows the container to recreate the data. This is
not an optimal solution. Service Fabric allows to declare a so called move
cost which is considered by the scheduling algorithm. To reduce the proba-
bility of rescheduling to another node, the move cost of all Redis instances is
set to the value high. This instructs Service Fabric to not move the container
except it is inevitable. It is not possible to declare a service as unmovable
[Mic17h].

7.5 Providing high availability and fault tolerance

The cluster internals on how each orchestration platform achieves high avail-
ability and fault tolerance have already been discussed in the Sections 7.2
and 7.3. Therefore, this section focuses on a developer’s perspective and
explains measures they can take to improve fault tolerance.

The key concept is adding redundancy to all microservices. As already dis-
cussed, both orchestration platforms provide mechanisms for the developer
to declare the desired number of service instances, and can also adapt this
number automatically depending on the workload.

When provisioning a cluster with Azure Kubernetes Service or Service Fab-
ric, it is recommended to handle incoming traffic using a public load bal-
ancer. Independent of the orchestration platform an Azure Load Balancer6

is created automatically in front of the cluster. The load balancer dispatches
incoming requests to the virtual machines in the cluster. To ensure the
load balancer only routes traffic to available virtual machines, it uses health
probes. If a virtual machine doesn’t respond to a probe, the load balancer
marks it as temporarily unavailable.

6https://docs.microsoft.com/en-us/azure/load-balancer/load-balancer-overview

https://docs.microsoft.com/en-us/azure/load-balancer/load-balancer-overview

7. Comparison of Azure Kubernetes Service and Service Fabric 76

A similar approach to ensure the availability of particular services is to uti-
lize health checks. These are implemented by providing a service endpoint
that is used by the orchestration platform to verify its state. How a health
check endpoint is implemented is up to the developer. It is important not to
include dependencies, e.g. a working database connection or other microser-
vices, into these checks. This can cause cascading failures throughout the
application, for instance, when there are network problems or the database
is temporarily unavailable. Instead of removing services from the application
completely, graceful degradation is recommended to maintain functionality
which is independent of the unavailable dependency.

In a continuous-development environment, developers deploy updates to
their services at a very high frequency. Such a deployment process must
not cause downtime. A high rate of daily deployments, involves a higher risk
of failures during the update process. Therefore, deployment errors are to be
expected and a recovery process must be in place to bring the application
back into a functioning state.

7.5.1 Azure Kubernetes Service

The following aspects explain how Azure Kubernetes Service is ensuring
high availability and mitigates the impact of failing services.

Health checks

Kubernetes uses probes to check if a pod is functioning correctly. Containers
within a pod provide endpoints, for example via HTTP, that are called peri-
odically by the kubelet. To signal the service is healthy, an endpoint returns
a success response code. There are two different kinds of probes that can be
provided by a container: readiness and liveness probes. The readiness probe
indicates if a container is ready to receive requests. If the probe fails, Ku-
bernetes stops forwarding requests to this instance until the readiness probe
succeeds again. This probe is also helpful if a container’s startup procedure
is time-consuming: after completing the startup, it can signal its ready-state
in order to receive requests. The liveness probe is used to determine a faulted
container state. Per default, a failing liveness probe results in Kubernetes
terminating and restarting the container. This should only be used if the
failure cannot be resolved within the service. For example, this might be the
best option if a deadlock has occurred [Kub19m]. The kubelet must not start
checking the liveness probe before the container is initialized. Otherwise the

7. Comparison of Azure Kubernetes Service and Service Fabric 77

1 readinessProbe:
2 httpGet:
3 path: /health
4 port: 80
5 initialDelaySeconds: 10
6 failureThreshold: 3
7 livenessProbe:
8 httpGet:
9 path: /health

10 port: 80
11 initialDelaySeconds: 20
12 failureThreshold: 10

Program 7.13: Readiness and liveness probes within the container specifica-
tion of a deployment object; initialDelaySeconds specifies when the kubelet
starts checking the probe after startup, failureThreshold specifies the number
of consecutive failures until actions are taken

container will always be restarted before it is available, causing an endless
initialization loop. The property initialDelaySeconds specifies how long the
kubelet waits before checking a probe. Dinesh [Din18] recommends using
the 99th percentile initialization time.

Program 7.13 shows a containers declaration of both probes in form of HTTP
requests. It is possible to point both probes to the same endpoint. In this
case, the recovery actions for the liveness probe should be triggered later
than the actions for the readiness probe: in the event of an overload, a
service has time to recover instead of being terminated immediately.

Updating services

Kubernetes supports two different strategies to update a deployment ob-
ject: recreate and rolling update. The recreate strategy deletes all existing
pods before it creates pods of the new version. Here the deployment is tem-
porarily unavailable and only useful during development. The rolling update
strategy alternately creates new and deletes old pods, keeping the total num-
ber of pods within a relative deviation of 20 percent. The upper and lower
limit of this deviation can be specified explicitly using the maxSurge and
maxUnavailable properties respectively [Kub19f].

Additionally, a rollback mechanism is required to recover from update fail-
ures and mitigate the risk of downtime. Kubernetes does not provide a
declarative approach to automatically rollback on deployment failures but

7. Comparison of Azure Kubernetes Service and Service Fabric 78

requires the developer to manually rollback using the command line inter-
face. To enable automatic rollback, the Helm package manager – explained
in Subsection 7.9 – can be utilized. More complex strategies, like blue-green
or canary deployments, are also covered Subsection 7.9.1.

Further measures

As discussed in Section 7.4, namespaces are a concept to limit resources for
different parts of the application or cluster. Similar to the bulkheads pattern
from Subsection 4.4.2, namespaces ensure fault tolerance by prohibiting mi-
croservices to over-commit resources which would cause starvation of other
microservices.

7.5.2 Service Fabric

The following measures describe how Service Fabric is achieving high avail-
ability and fault tolerance. These measures are compared with those of AKS.

Health checks

Service Fabric uses a hierarchical model to represent a cluster’s health state
where each child entity reports its health state to its parent. In regards to
containerized microservices, simplistically speaking, the container reports
its state to the service instance which it is encapsulated by. The service
instance then reports to its application instance which in turns reports to
the cluster. Depending on the configured health policy, an error in the child
entity results in an error, a warning or is ignored [Mic18e].

In order to terminate a container that is in an unhealthy state, Service
Fabric incorporates Docker health checks: in the Dockerfile a HEALTHCHECK
command is defined that is executed at a regular interval of time. For ex-
ample, this can be a HTTP request to a health endpoint provided by the
microservice. If this health check fails, Service Fabric marks the container
with a warning. By default, Service Fabric does not terminate the container.
In order to automatically restart it, the containers’ health configuration can
be modified. Program 7.14 shows how this configuration is declared. The
combination of Docker health checks with the restart configuration enables
the same functionality as a Kubernetes liveness probe.

7. Comparison of Azure Kubernetes Service and Service Fabric 79

1 <ContainerHostPolicies CodePackageRef="Code">
2 <HealthConfig
3 IncludeDockerHealthStatusInSystemHealthReport="true"
4 RestartContainerOnUnhealthyDockerHealthStatus="true" />
5 </ContainerHostPolicies>

Program 7.14: A container’s health configuration; line 3 instructs Service
Fabric to restart the container when the health check fails

1 <StatelessServiceType ServiceTypeName="MVCType" ...>
2 <Extensions>
3 <Extension Name="Traefik">
4 <Labels xmlns="http://schemas.microsoft.com/2015/03/fabact-no-schema">
5 <Label Key="traefik.enable">true</Label>
6 <Label Key="traefik.backend.healthcheck.path">/health</Label>
7 ...

Program 7.15: The manifest of the MVC service registering a health endpoint
for Traefik

Service Fabric does not provide an equivalent mechanism to a Kubernetes
readiness probe. In order to schedule ingress traffic only to operational con-
tainers, Traefik is deployed as an internal load balancer. Each service regis-
ters with Traefik and provides a health check endpoint that is periodically
checked by Traefik [Con19]. Only if this endpoint returns a success status
code, Traefik will forward requests to the service instance – see Program 7.15
for an example configuration. Section 7.8.2 covers Traefik in more detail.

Updating services

A Service Fabric cluster is divided into multiple update domains. In a rolling
upgrade, Service Fabric applies the upgrade to one update domain at a time.
When an update domain is considered healthy after applying the changes,
the upgrade proceeds with the next update domain. An upgrade is only suc-
cessful when all update domains are healthy. In case an upgrade fails, Service
Fabric supports to roll back to the initial version automatically [Mic18g].

It is also possible to upgrade all instances at once. Since this procedure
deletes the old instances first and then creates new ones, this causes down-
time. For this reason, upgrading all instances at once is only recommended
for development purposes [Mic18g].

7. Comparison of Azure Kubernetes Service and Service Fabric 80

Further measures

Since Service Fabric has no concept of namespaces, resource limitations must
be specified at a service or container level. This is error prone and does not
allow a cluster administrator to enforce resource limits.

7.6 Ensuring security

Running containers should follow the principle of least privilege. This means
a service or container only has access to resources that it requires to accom-
plish its responsibilities. Per default, a Docker container is run with user ID
(UID) 0 and thus has root access. Obviously, this does not follow the prin-
ciple of least privilege and allows a potential attacker to further exploit the
compromised container and possibly gather information about the network,
orchestration system or other services. To mitigate this vulnerability, it is
recommended to apply the USER instruction in the Dockerfile. On Linux for
instance, USER 1000 sets the user ID to 1000 which does not have root ac-
cess. It is not required that a user with this id already exists. In a Windows
container, a user has to be created before it can be specified with the USER
instruction [Docc].

A disadvantage of this method is its susceptibility to developer errors be-
cause the instruction must be specified explicitly in every Dockerfile. It also
hinders the direct usage of public images that don’t apply this instruction.
This section evaluates the capabilities of each orchestration platform to re-
strict root access within containers on a higher and more general level.

Furthermore, this section covers how to manage credentials and other sen-
sitive information in the cluster.

7.6.1 Azure Kubernetes Service

The following aspects explain the most crucial security features a developer
has available on Azure Kubernetes Service.

7. Comparison of Azure Kubernetes Service and Service Fabric 81

1 apiVersion: policy/v1beta1
2 kind: PodSecurityPolicy
3 metadata:
4 name: unprivileged-only
5 spec:
6 privileged: false
7 allowPrivilegeEscalation: false
8 runAsUser:
9 rule: MustRunAsNonRoot

Program 7.16: A pod security policy to disallow root access for containers;
not available for production in AKS

Restricting root privileges

Kubernetes allows to set a security context for pods and their containers.
The security context declares a user ID that executes all container processes.
This declaration takes precedence over the specified UID in the Docker im-
age. Using a security context allows to run public container images without
root privileges even if they do not use the USER instruction [Kub19e].

Still, a security context has to be specified in the pod definition which can
cause vulnerabilities if developers don’t explicitly set it. In order to disable
root access for containers for the entire cluster, Kubernetes implements the
concept of pod security policies [Kub19o]. A pod security policy consists of
several rules that are checked when a pod is created. Program 7.16 declares
a policy that forces all containers to run without root privileges and hinders
a container from escalating its privileges. For AKS clusters this feature is in
preview state and not ready for production use [Mic19i].

Secret management

A pod references secrets that it needs to use in its YAML declaration. A
secret is represented by a Kubernetes object. Secrets managed by Kubernetes
are encoded in base64; this makes it possible to also store certificates that
are originally in binary format. As a protective measure, a secret is only
written to temporary memory on nodes, where pods reference the secret.
If all these pods are removed from the node, the secret is removed, too. A
pod can consume the secret in two ways: either the secret is injected via an
environment variable or mounted as a volume [Kub19p].

Furthermore, Microsoft is working on the integration of Azure Key Vault

7. Comparison of Azure Kubernetes Service and Service Fabric 82

1 <Principals>
2 <Users>
3 <User Name="SetupLocalSystem" AccountType="LocalSystem" />
4 </Users>
5 </Principals>
6
7 <ServiceManifestImport>
8 <ServiceManifestRef ServiceManifestName="MVC.RedisPkg" ... />
9 <Policies>

10 <RunAsPolicy CodePackageRef="Code" UserRef="SetupLocalSystem"
11 EntryPointType="Setup" />
12 ...

Program 7.17: Application manifest showing the configuration and referenc-
ing of a privileged system account principal

into AKS: this allows to manage sensitive data in Azure Key Vault and
mount it as a volume to pods [Mic19a].

7.6.2 Service Fabric

Service Fabric has similar capabilities as Azure Kubernetes Services with
regard to secret management. For containers, however, Service Fabric only
offers limited security features.

Restricting root privileges

Service entrypoints on Service Fabric are executed with an unprivileged ac-
count. In order to run setup scripts, as done in Section 7.9, higher privileges
are required. These are obtained through the definition of a user principal
for the local system account. On Windows this is the LocalSystem account, on
Linux this maps to root (UID 0). This principal is referenced in a RunAsPolicy
for the entrypoint [Mic18f]. Program 7.17 demonstrates how this principal
is passed to the setup entrypoint of the MVC service’ Redis container.

The privilege restriction is only implemented for native processes, i.e. script
execution or executables running directly on Service Fabric, but not for
Docker containers: Service Fabric controls the Docker daemon (dockerd)
and instructs it to run a container image. The Docker daemon then dele-
gates this to its default container runtime known as runC. Service Fabric
executes dockerd with elevated privileges; containers are also run with el-

7. Comparison of Azure Kubernetes Service and Service Fabric 83

evated privileges if not specified explicitly with the USER instruction in the
Dockerfile. Service Fabric allows to specify the ContainerServiceArguments pa-
rameter which is used to start dockerd with custom arguments. Also, dockerd
provides a mechanism to configure its runtime with custom arguments. To
apply custom arguments to the runtime, the daemon configuration file must
be used; the command line interfaces does not support it [Docb]. Since the
specified ContainerServiceArguments are only applied to dockerd’s command
line arguments, it is not possible to pass an unprivileged user id from the
Service Fabric configuration through to the container instance. To summa-
rize, Service Fabric does not provide assistance for the developers to follow
the principle of least privilege with regard to containers.

With Hyper-V isolation, Service Fabric on Windows supports a higher level
of isolation by hosting each container on is own virtual machine and thus
providing each container its own kernel.

Secret management

Service Fabric provides the Central Secret Store (CSS) to safely handle
secrets within the cluster. The CSS is a replicated cache store that holds
sensitive data in memory. This data is stored encrypted; for decryption the
private key of the encryption certificate is required. A secret can either
be declared using an ARM7 template or created imperatively via a REST
API. To make a secret available to a container, it is declared in the service
manifest. Same as AKS, in order to use the secret, the developer can choose
between environment variable injection and volume mounting [Mic19k].

Beginning with Service Fabric version 7, the CSS supports a preview feature
that incorporates Azure Key Vault. With this feature, the secrets are stored
in Azure Key Vault and the CSS acts as a caching layer [Mic19e; Sen19].

7.7 Simplifying networking

This section focuses on the fundamental networking that enables commu-
nication between containers on different nodes. Higher-level mechanisms
that facilitate communication without knowing a service’ IP address are
not within the scope of this section; these mechanisms are explained in Sec-
tion 7.8.

7Azure Resource Manager (ARM) is a declarative approach to specify cloud resources

7. Comparison of Azure Kubernetes Service and Service Fabric 84

1 spec:
2 containers:
3 - name: allready-identity
4 image: allreadyacr.azurecr.io/allready.identity@sha256:e375d7...
5 ports:
6 - containerPort: 80

Program 7.18: Pod template specification of a container listening on port 80

7.7.1 Azure Kubernetes Service

In a Kubernetes cluster all pods can communicate with each other, indepen-
dent of which physical node they are running on. The Kubernetes network
model assigns every pod a unique cluster-internal IP address. This removes
risk of conflicting ports on cluster nodes, which would potentially require
port coordination among development teams [Kub19c]. Program 7.18 shows
how a pod’s port 80 is opened to receive traffic.

7.7.2 Service Fabric

Service Fabric supports two networking modes: nat, which is the default,
and open. Using nat mode requires port coordination between all microser-
vices because multiple containers listening on the same port will result in
failures. If different teams are in charge of different microservices, this en-
tails considerable effort and is therefore not feasible. Using open mode, ev-
ery service has a dynamically assigned IP address, eliminating the need for
port coordination mentioned above. Program 7.19 explains how a container’s
port is made available to other services within the cluster. A restriction on
Linux clusters is that an application cannot consist of services with different
networking modes. Using open mode requires to manually add a network
interface (NIC) to the VMSS for each assignable IP address. This means the
maximum number of IP addresses in the cluster is equal to the number of
network interfaces multiplied by the number of nodes. A maximum of 50 IP
addresses per node has been tested by Microsoft [Mic18h].

It is not possible to force the networking mode on cluster-level, i.e. in order
to avoid port collisions, each service has to specify the open mode when it
requires to listen on a static port.

7. Comparison of Azure Kubernetes Service and Service Fabric 85

1 <CodePackage Name="Code" ...>
2 <EntryPoint>
3 <ContainerHost>
4 <ImageName>allreadyacr.azurecr.io/allready.identity@sha256:e375d7...
5 </ImageName>
6 </ContainerHost>
7 </EntryPoint>
8 </CodePackage>
9 <Resources>

10 <Endpoints>
11 <Endpoint
12 Name="IdentityTypeEndpoint" Protocol="http" UriScheme="http"
13 Port="80" CodePackageRef="Code" />
14 </Endpoints>
15 </Resources>

Program 7.19: Specification of a container listening on port 80 within a ser-
vice manifest; line 13 publishes port 80 for the allready.identity container
which is referenced via the code package name (highlighted in blue)

7.8 Enabling service discovery

Owing to frequently changing service locations, an automatic approach is
required to enable service communication. Communication can be broken
down into two categories: service to service, and client to service. The for-
mer category is mainly about how services can provide endpoints that are
easily discoverable and accessible. Both platforms provide a DNS server for
a server-based discovery approach. The latter covers how services within the
cluster can be exposed to external clients in a secure way, and how to handle
the resulting, incoming traffic. An integral pattern is the API gateway, which
is explained in Subsection 4.4.4. The Azure Load Balancer residing in front
of the cluster, operates on layer 4 and thus is not able to apply a HTTP-
based routing. Layer 7 routing has to be implemented by the orchestration
platform.

7.8.1 Azure Kubernetes Service

Pods in a Kubernetes cluster are ephemeral, i.e. they are created and ter-
minated with a high frequency. This results in constantly changing IP ad-
dresses. Kubernetes has several concepts that simplify service discovery in
the cluster.

7. Comparison of Azure Kubernetes Service and Service Fabric 86

Service discovery

As explained in Section 7.2, Kubernetes provides a service object – in this
Subsection from here on referred to just as service – that keeps track of a set
of pods. This service also has a unique cluster-internal IP address and can be
consumed by other pods in two different ways: via an environment variable
that injects the IP address of the service into a container, or by utilizing
the internal DNS server. The first approach is not viable because to inject
the IP address of a service into the container, the service must already exist
when the container is created. The service’ IP address can be discovered by
resolving its name – additionally with its namespace if required – using the
DNS server. A service can load balance requests across multiple deployments.
This can be utilized when deploying two versions of a microservice side-by-
side, each as its own deployment. Requests to the service’ DNS name are load
balanced between both versions but the existence of multiple deployments
is unapparent from the caller’s perspective. A service also allows to map a
container’s port to a custom one. For example, when a container is listening
on port 8080, the service can receive HTTP requests on port 80 and redirect
them to the container’s port 8080.

Exposing services

Although it is possible to directly expose a service outside the cluster via
a dedicated Azure Load Balancer, it is recommended to provide a single
entrypoint to external clients that acts as a facade for the internal services.
To achieve this, Kubernetes offers an ingress object [Kub19h]: An ingress
is comprised of a standardized resource definition and an implementation-
specific ingress controller. The ingress resource is specified by the developer
and interpreted by the ingress controller. When an ingress object is created,
an Azure Load Balancer is provisioned that forwards external layer 4 traffic
to the ingress controller. An ingress controller is a reverse proxy operating
on layer 7 traffic. There exist several implementations for ingress controllers
that all adhere to the ingress resource definition. The available implementa-
tions show differences in their functionality but most of them offer a common
feature set:

• An ingress provides TLS termination for incoming requests that are
then forwarded to back end services via HTTP. This removes the de-
cryption overhead from the back end services.

• It enables more precise load balancing than a service object. A service
object uses kube-proxy to route traffic on layer 4. Most implementa-

7. Comparison of Azure Kubernetes Service and Service Fabric 87

tions of ingress controllers don’t just forward requests to a service,
which then does the load balancing, but communicate with the kube-
apiserver to keep track of the moving pods. Because ingress controllers
operate on layer 7, they can perform more application-oriented load
balancing algorithms.

• Using an ingress, several services can be consolidated and made avail-
able at the same IP address. Routing rules allow to address different
services depending on the host or path.

• An ingress controller can be replicated to ensure high availability.

To expose allReady microservices to external clients, an nginx ingress con-
troller is used – mainly for the reason that it’s officially supported by Kuber-
netes [Kub19i]. All externally accessible services are exposed under the same
host name allready.westeurope.cloudapp.azure.com and are reachable via dif-
ferent sub paths. This ingress is the single entrypoint for external clients.
The ingress resources in Program 7.20 defines how the internal microser-
vices are reachable, e.g. all requests to /identity are routed to the identity
microservice. As explained in Subsection 6.2.2, the identity microservice is
aware of the sub path.

The ingress controller is also responsible to terminate incoming TLS connec-
tions. With the integration of cert-manager8, a Kubernetes tool to manage
certificates, automatic issuance and renewal of certificates using Let’s En-
crypt is possible. Identity Server’s authorization code flow, based on OpenID
Connection, utilizes HTTP with redirects between the MVC and identity mi-
croservice. To keep these redirects from failing, the proxy buffer size of the
underlying nginx must be increased. The nginx ingress allows to configure
the proxy buffer size with custom nginx.ingress.kubernetes.io annotations
in the ingress resource. These annotations are specific to the nginx ingress
controller. Program 7.20 shows the complete specification of the ingress re-
source used for the allReady application.

7.8.2 Service Fabric

Service Fabric comes with several limitations on how containers can be ad-
dressed within the network. These limitations entail greater effort for the
development teams to operate their services without interfering with each
other. There are a number of mechanisms, which Kubernetes provides out of
the box, that have to be implemented manually in a Service Fabric cluster.
Therefore, these aspects are explained in greater detail.

8https://cert-manager.io/docs/

https://cert-manager.io/docs/

7. Comparison of Azure Kubernetes Service and Service Fabric 88

1 apiVersion: networking.k8s.io/v1beta1
2 kind: Ingress
3 metadata:
4 name: allready-ingress
5 annotations:
6 kubernetes.io/ingress.class: nginx # controller implementation
7 certmanager.k8s.io/cluster-issuer: letsencrypt-prod
8 nginx.ingress.kubernetes.io/proxy-buffering: "on"
9 nginx.ingress.kubernetes.io/proxy-buffer-size: 8k # default=4k

10 spec:
11 tls:
12 - hosts:
13 - allready.westeurope.cloudapp.azure.com
14 secretName: acme-crt-secret
15 rules:
16 - host: allready.westeurope.cloudapp.azure.com
17 http:
18 paths:
19 - path: /
20 backend:
21 serviceName: allready-mvc
22 servicePort: 80
23 - path: /main
24 backend:
25 serviceName: allready-main
26 servicePort: 80
27 - path: /identity
28 backend:
29 serviceName: allready-identity
30 servicePort: 80

Program 7.20: A complete ingress specification; line 6 defines the ingress
controller to use as a back end for this ingress resource, line 7 integrates the
certificate issuer object of cert-manager into the ingress, lines 8 and 9 apply
custom configuration to the nginx ingress controller, lines 16 to 30 specify
the routing rules for incoming requests

Service discovery

Service Fabric runs a highly available naming service that was originally
built to be used by its platform-integrated programming model. Each de-
ployed service type is called a named service. It has a unique name consisting
of its application and service name. The name is determined by the naming
service and cannot be set manually. All instances of a named service share
the same name. The naming service keeps track of the network locations of
the instances and resolves the name to an IP address. To allow Linux and
Windows containers to resolve the network location of other services without

7. Comparison of Azure Kubernetes Service and Service Fabric 89

being dependent on the platform framework, a cluster-internal DNS server
operates on the basis of the naming service, i.e. the DNS server uses the
naming service to resolve the IP address of a service endpoint. For con-
tainerized services, a service endpoint is equivalent to an exposed container
port [Mic17c].

Although it is not recommended to integrate microservices based on a syn-
chronous communication pattern, synchronous HTTP calls still can be re-
quired for specific use cases, like the MVC service querying the main service.
The MVC service is a special kind of client that resides within the appli-
cation. To integrate these services, the main service – as well as any other
service that provides an API to the MVC service – has to expose its endpoint
at port 80. The reason for this is that the A record9 returned by the DNS
service only contains the IP address but not the port number. Although it
is possible to retrieve the port number of a service via an SRV lookup, most
HTTP libraries do not support this. Therefore, the default port 80 is the
only solution without hard-coding ports into consuming services or intro-
ducing further discovery mechanisms. This is still a problem for non-HTTP
endpoints like Redis: these ports have to be coordinated between the service
and the consuming client. Of course using port 80 is also possible. However,
this might lead to a scarcity of IP addresses due to the soft limit of 50 NICs
per node.

As opposed to Kubernetes, in Service Fabric the DNS name of a service is a
direct mapping to a set of identical container instances. This means, there is
no ready-to-use mechanism to deploy multiple service versions sharing one
common DNS name. As a result, the executing of more complex deployment
approaches becomes more difficult.

Exposing services

Service Fabric comes with a built-in reverse proxy to provide services to
external clients. The foundation of the reverse proxy is the naming service,
which is used to resolve public URIs to internal names. The reverse proxy
has the following downsides that make it unsuitable as a publicly accessible
API gateway [Mic17d]:

• It forces a specific URI format for all services that is derived from
the naming service. The URI is constructed using the application and
service name. Thus, the reverse proxy cannot be used as a facade

9An A record is a type of DNS record and that maps a domain name to an IP address.

7. Comparison of Azure Kubernetes Service and Service Fabric 90

and exposes information about the internal application architecture
to external clients by its naming convention.

• Utilizing the built-in reverse proxy results in exposing all internal ser-
vices to the public. This poses a security risk as there is no possibility
to control which services are accessible through the reverse proxy.

• If a service cannot be reached by the reverse proxy, which is very likely
due to services moving location in the cluster, it receives a 404 error
response. The reverse proxy then automatically retries the requests
to another service instance. These automatic retries cause issues for
404 responses that are returned intentionally by the business logic
of a service. Reverse proxy will also retry these requests unless it is
explicitly instructed by the service not to by setting the HTTP header
X-ServiceFabric to ResourceNotFound. This couples service logic with
specifics of the orchestration platform and is thus undesirable.

• The reverse proxy is only available on Windows clusters.

There are several other layer 7 options available to implement the API gate-
way pattern and expose microservices in a controlled manner. The following
itemization explains them and gives some indication on their applicability:

• Azure API Management (APIM): This Azure product provides a di-
rect integration into Service Fabric. It is deployed in the same virtual
network as the Service Fabric cluster and utilizes the naming service
to resolve services. Due to the mandatory integration into the same
virtual network, the Premium tier is the only available option for pro-
duction environments [Mic17g]. Since this tier incurs costs of about
e2357 per month, APIM is not considered for this prototype [Mica].

• Azure Application Gateway (AAG): AAG is another product managed
by Azure. Opposed to APIM, AAG cannot be integrated directly into
a Service Fabric cluster. AAG is suitable to route requests to different
node pools depending on the path. Since the allReady application is
running on a single node pool, this routing mechanism is not applica-
ble. AAG is not able to route requests directly to the moving service
endpoints because it has no access to the naming service and thus has
no information about the endpoint locations [Mic19m].

• Traefik: Traefik is an open source reverse proxy that, in its version
1.7, provides an integration with Service Fabric. Other than APIM and
AAG, Traefik is not managed by Azure but deployed to the cluster as a
separate service. This has the advantage of a self-contained cluster that
does not rely on external vendor-specific components. In a prototypical
approach, the allReady application was implemented for both Service
Fabric operating systems utilizing Traefik as a reverse proxy.

7. Comparison of Azure Kubernetes Service and Service Fabric 91

1 <StatelessServiceType ServiceTypeName="MainType" ...>
2 <Extensions>
3 <Extension Name="Traefik">
4 <Labels xmlns="http://schemas.microsoft.com/2015/03/fabact-no-schema">
5 <Label Key="traefik.enable">true</Label>
6 <Label Key="traefik.frontend.rule.default">PathPrefix: /main</Label>
7 <Label Key="traefik.frontend.passHostHeader">true</Label>
8 ...

Program 7.21: Registration of the main service that instructs Traefik to for-
ward the /main route to the main service

Traefik is available for several orchestration platforms. For each supported
platform, Traefik uses a dedicated provider implementation. A provider is a
component within Traefik that observes the cluster state using the manage-
ment API of the specific platform. In the case of Service Fabric, the provider
sends periodic requests to the Service Fabric Client REST API10. In order
to gain access to the REST API, the provider authorizes itself using a client
certificate issued by Service Fabric. Since the provider only queries the API,
it is recommended to issue a read-only certificate without administrative
permissions. When the provider detects that services have changed location
or become unhealthy, Traefik is notified by the provider and updates its
routing configuration [CG18].

Unlike a Kubernetes ingress, which holds routing configuration in a cen-
tralized resource, Traefik on Service Fabric uses a decentralized mechanism
based on labels. Services need to register themselves with Traefik. This is
accomplished by specifying a set of labels in the service manifest to instruct
Traefik which routes to forward. Further labels are available to e.g. spec-
ify rewrites of the HTTP request, or the application of additional headers.
These labels are managed by the Service Fabric platform and made avail-
able to Traefik through its provider [CG18]. Program 7.21 shows how the
allReady main service registers with Traefik to receive requests to the /main
route.

As every other microservice, Traefik is deployed within a container specified
by an application and a service manifest. It serves as the single entrypoint of
the allReady application, forwarding all incoming traffic from the layer 4 load
balancer to the cluster-internal microservices. Figure 7.3 gives an overview
of the cluster architecture. On every cluster node a Traefik instance is de-
ployed. In case an instance becomes unavailable, the Azure Load Balancer
stops forwarding requests to this particular instance. To check for availabil-

10https://docs.microsoft.com/en-us/rest/api/servicefabric/sfclient-index

https://docs.microsoft.com/en-us/rest/api/servicefabric/sfclient-index

7. Comparison of Azure Kubernetes Service and Service Fabric 92

ity, the Azure Load Balancer periodically sends health checks to the node,
addressing the port 8081 used by Traefik. Traefik is deliberately configured
to not use port 80 for incoming HTTP requests: as explained above, most
microservices in the cluster use port 80 to enable internal service discov-
ery based on the DNS service. Traefik using the same port as other services
would result in these services receiving the ALB health check. If one of these
services also happens to provide an identical health check path, Azure Load
Balancer will erroneously forward requests to it.

Removing a node, and with it the Traefik instance, from the rotation of the
Azure Load Balancer has no effect on the availability of the back end services
on that node. This is because the load balancing of Traefik instances is not
restricted to destinations on the same node. For the sake of brevity, these
routing possibilities are not depicted in Figure 7.3.

Within the allReady application the responsibilities of the Traefik reverse
proxy are enforcing HTTPS, TLS termination, and routing requests to ser-
vices depending on the path, which includes checking the health endpoint
of a service to verify if it is ready to receive traffic (see Subsection 7.5.2).

A default configuration for Traefik is applied with a static TOML file that is
loaded at startup. In order to query service information with the associated
labels, Traefik must be pointed to the location of the Service Fabric Client
REST API. For executables running natively on Service Fabric this is lo-
calhost:19080. Owing to Traefik running in a container, the Service Fabric
Client REST API cannot be reached at localhost. This is solved by pointing
Traefik to the public Azure Load Balancer that, in its default configuration,
forwards requests on port 19080 to the Service Fabric management end-
point. Since the endpoint requires the above mentioned certificate for au-
thorization, this approach is satisfactory from a security perspective for this
prototypical implementation. Different cluster environments of course have
different URLs of their management endpoints. Therefore, it is necessary to
provide a parameterizable Docker image. In addition to the Traefik configu-
ration using a TOML file, it is possible to override configuration values using
identically named arguments. The Linux Dockerfile in Program 7.22 shows
how this mechanism is used: at first, the container environment variable
MGMT_URL is set, which is then applied to the Traefik configuration.

To deploy a Traefik container on Linux, an official base image is provided on
Docker Hub11. For Windows Nano Server (nanoserver:1803), no such base
image is available, thus a custom image has to be created from scratch.
Traefik is based on the Go programming language; when executing Traefik

11https://hub.docker.com/_/traefik

https://hub.docker.com/_/traefik

7. Comparison of Azure Kubernetes Service and Service Fabric 93

Node 1

Node 0

MVC:80

Main:80

Identity:80

Routing

Provider

:8081

DNS

Node 2

update

poll

Traef ik

Reliability Subsystem

Failover
Manager

Placement and
Load Balancer

Naming
Service

PathPre�x: /main

PathPre�x: /

PathPre�x: /identity

allready-main?

Azure LB
80:

HT
TP

S

443:

Client
http://allready.org/campaigns/5

Management
Subsystem

TLS

301

:443

Figure 7.3: Simplified allReady architecture with Traefik as a reverse proxy;
this demonstrates the process of an external client sending an HTTP request,
steps I. and II. happen independently of the client request:

I. All services that provide an HTTP entrypoint (MVC, main and iden-
tity) indicate which route they will serve by specifying the PathPrefix
label. Services are scheduled by the Placement and Load Balancer.

II. The provider component within Traefik periodically polls the manage-
ment subsystem. The management subsystem returns the cluster state
including the PathPrefix labels.

1. The client sends a HTTP request to http://allready.org/campaigns/5.
2. The Azure Load Balancer receives the request at port 80 and forwards

it to port 8081 where Traefik is listening on.
3. To enforce HTTPS, Traefik responds with code 301 Moved Permanently.
4. The client requests the same URL but now using HTTPS.
5. The Azure Load Balancer receives the request at port 443 and again

forwards it to port 443 where Traefik is listening on.
6. Traefik decrypts the TLS connection and forwards the request to the

MVC service that has registered itself for the default route.
7. The MVC service queries the DNS service for the main service location.
8. The MVC service sends an HTTP request to the main service gathering

the required data to render the view.
9. The main service responds with the data and subsequently each service

returns to their caller until the client receives the requested web page.

7. Comparison of Azure Kubernetes Service and Service Fabric 94

1 FROM traefik:v1.7.12-alpine
2 WORKDIR /traefik
3
4 COPY cert/servicefabric.crt servicefabric.crt
5 COPY cert/servicefabric.key servicefabric.key
6 COPY traefik.toml .
7 EXPOSE 443
8 EXPOSE 8080 # dashboard
9 EXPOSE 8081

10
11 ENV MGMT_URL http://localhost:19080
12 CMD traefik --configfile=traefik.toml --servicefabric.clustermanagementurl=MGMT_URL

Program 7.22: Dockerfile for Linux to build the Traefik image for Service
Fabric; line 12 overrides the cluster management URL depending on the
environment

1 FROM mcr.microsoft.com/windows/servercore:1803 as servercore
2 FROM mcr.microsoft.com/powershell:nanoserver-1803
3 COPY --from=servercore /windows/system32/netapi32.dll /windows/system32/netapi32.dll
4 ...

Program 7.23: Partial Dockerfile for Windows to import the missing DLL

in a Windows container, Go requires the system library netapi32.dll but
this library has been removed from nanoserver:1803 in order to reduce the
image size. To solve this problem, netapi32.dll is copied from the larger
Windows Server Core image, as can be seen in Program 7.23.

Traefik is configured to force clients to use a secure connection; therefore,
it has to listen on a port for HTTP (8081) and a port for HTTPS (443).
When Traefik receives an unsecured HTTP request, it responds with the
status code 301 Moved Permanently and instructs the client to use the HTTPS
protocol. For incoming HTTPS requests, Traefik takes over the termination
of the connection and then forwards the requests to the back end services
via HTTP.

On Service Fabric, Traefik itself does not support automatic issuance of
certificates with Let’s Encrypt; this would require all Traefik instances to be
coordinated by running in cluster mode, which is in beta state for version 1.7.
To enable instances forming a Traefik cluster, an additional key value store
is mandatory to be deployed on Service Fabric [Con]. Storing the necessary
data for the issuance process in a flat file system, like a volume backed
by a central Azure Storage, is explicitly advised against due to possible

7. Comparison of Azure Kubernetes Service and Service Fabric 95

conflicts [Tom18]. Since this would exceed the scope of this prototype, a
self-signed certificate is used to enable encrypted communication.

7.9 Enabling continuous deployment

Continuous deployment is a fully automated process that enables shipping
small iterative changes without the need for human approval before the
deployment. This section discusses the characteristics of the orchestration
platforms that facilitate continuous deployment. These characteristics are
discussed in relation to the sequential phases of a deployment pipeline: com-
mit, build, staging and production.

The commit phase is about facilitating a rapid development environment and
a fast feedback loop for the developer. This concerns the local development
environment as well as tooling that enables the developer to quickly test
their code in a cloud environment before committing to source control. This
thesis focuses on Windows as the developer environment. Apple’s macOS is
not considered.

The build phase concerns the pipeline itself and how to build the Docker
images rather than the orchestration platform. Therefore, this phase is not
included in the comparison.

The staging phase of a deployment pipeline covers how microservices are
deployed to real environment in the cloud. Depending on the number and
structure of development teams, multiple environments might be used. Run-
ning them all in a single cluster is an option to save infrastructure costs.
Meticulous resource governance must ensure these environments do not in-
terfere with each other.

In the production phase it is important to maintain high availability dur-
ing the rollout of new features. To mitigate the risk of downtime, different
rollout strategies exist to deploy new versions of a microservice: blue-green
deployment, where both versions coexist with the same number of instances
until all traffic is switched over from the old to the new version; canary de-
ployment, where instances of the new version are gradually increased while
old instances are removed simultaneously; or A/B testing, where the new
version is only made available to a fixed group of end users, requiring user-
based routing.

7. Comparison of Azure Kubernetes Service and Service Fabric 96

7.9.1 Azure Kubernetes Service

To group cohesive resource objects, e.g. a deployment, a service and a hori-
zontal pod autoscaler, they can be bundled into a single package using Helm.
Helm is an open source package manager supported by the Cloud Native
Computing Foundation. A Helm package, also called a chart, can bundle
all resources required by a microservice alongside a default configuration,
and publish them in a chart repository. Various charts for ready-to-use open
source components are publicly available via Helm. To operate allReady in
AKS multiple components are installed using public Helm charts: the Rab-
bitMQ message bus with built-in support for high availability, Redis in a
master-replica combination, and the nginx ingress controller with the inte-
grated cert-manager component.

Contrary to Kubernetes itself, Helm allows to automatically roll back a mi-
croservice upgrade if it fails [Hel19]. Microsoft is working on the integration
of Helm charts into Azure Container Registry (ACR) to enable hosting pri-
vate charts within ACR [Mic18i].

Commit phase

Depending on the developer’s operating system there are different tools to
run a Kubernetes cluster on their local machine. On Windows two options
are available: minikube or Docker for Windows with integrated Kubernetes.
Both can be deployed as single node clusters but have some differences.
The use of Docker for Windows requires the underlying type 1 hypervisor
Hyper-V [Docd], whereas minikube can be installed either on Hyper-V or a
type 2 hypervisor like VirtualBox [Kub19r]. The disadvantage of Docker for
Windows is that it comes with a pre-installed version of Kubernetes that
cannot be changed [Doca].

In a microservices architecture there are many different parts potentially de-
veloped by many different teams. Although a microservice is independent of
others, integrating several microservices to execute a business process is es-
sential and might require a production-like multi-node cluster. The Microsoft
product Azure Dev Spaces enables developers to deploy their code directly
into an AKS cluster. This cluster runs all stable microservices of the en-
tire application and provides an approach to quickly integrate code changes
during development. Azure Dev Spaces utilizes the concept of namespaces
and creates a dedicated namespace for every dev space. Each developer can
have their own dev space allowing all developers to work on the same AKS

7. Comparison of Azure Kubernetes Service and Service Fabric 97

cluster without interfering with each other. The basic concept of Azure Dev
Spaces is the injection of sidecar containers that handle traffic routing and
image building. The integrated building of Docker images facilitates rapid
iterations by removing the need to build and push images into a separate
container registry [Mic19d].

Staging phase

As already discussed, Kubernetes provides namespaces to separate a cluster
in different environments. Not only does this help to isolate customers in a
single cluster but also allows to provision several staging environments in the
same cluster and individually restrict their resource consumption. This fa-
cilitates cost-efficient resource utilization for non-production environments.

Production phase

DNS names are only assigned to services but not to deployments. This decou-
pling allows two parallel existing deployment objects for a single microservice
without causing DNS conflicts. A blue-green deployment can be executed
by provisioning the new pods in the first step and then switching either by
updating the service object, or the ingress resource.

For a side by side deployment of two microservice versions that both receive
traffic, a single service object acts as a dispatcher and forwards requests to
pods of both deployments. This mechanism can be utilized to implement a
basic canary deployment strategy because traffic is automatically distributed
between the pods of the deployments. The distribution ratio cannot be con-
figured but rather is dependent on the number of pods of each deployment.
For example, to let the new deployment receive 10 percent of the requests,
the ration of old to new pods must be 9 to 1. To achieve an even smaller
percentage, the total number of pods must be increased further, leading to
a higher resource allocation. Due to the large ecosystem of Kubernetes, sev-
eral third-party solutions are available to implement a more sophisticated
load balancing. Depending on the specific needs, different solutions might
be the best fit. Some exemplary solutions are a Traefik ingress controller12,
Flagger integrated into the standard nginx ingress controller13, or a service
mesh like Istio14.

12https://docs.traefik.io/v1.7/user-guide/kubernetes/#traffic-splitting
13https://docs.flagger.app/usage/nginx-progressive-delivery
14https://istio.io/docs/concepts/traffic-management/

https://docs.traefik.io/v1.7/user-guide/kubernetes/#traffic-splitting
https://docs.flagger.app/usage/nginx-progressive-delivery
https://istio.io/docs/concepts/traffic-management/

7. Comparison of Azure Kubernetes Service and Service Fabric 98

Without installing third-party solutions, only simple load balancing strate-
gies can be applied. This means, it is not possible to bind a user to a partic-
ular deployment version. As a result, A/B testing also requires a third-party
solution.

7.9.2 Service Fabric

Service Fabric applications need to be packaged before they are deployed
to the cluster. Packages are not published to an external store but directly
pushed to the Service Fabric cluster. This impedes the reusability of pack-
ages across clusters since Microsoft does not provide a dedicated package
catalog for Service Fabric. However, the tool SFNuGet implements a pack-
aging approach that allows to provide Service Fabric applications as NuGet
packages [Mic18j]. As of today only 9 Service Fabric packages are publicly
available on nuget.org [Micj]. Still, using existing NuGet infrastructure to
provide company-internal packages can improve the development process.

Commit phase

For development purposes a Service Fabric cluster can be run on a local
machine. A local Service Fabric environment can be installed on Windows
as well as Linux. Natively, a local development cluster does only support
containers based on the same operating system. Since this limitation would
be a detrimental factor for the development of .NET Core Linux containers
on Windows machines, Microsoft provides a container image that runs a
Service Fabric Linux cluster on a Windows operating system [Mic17i]. This
allows developers to use the Visual Studio IDE on Windows while targeting
Service Fabric on Linux. In order to deploy containerized microservices to
Service Fabric on Windows, Windows containers are mandatory. For local
development, Windows containers must be built and run with Docker for
Windows [Mic19h].

From a developer perspective, errors that occur during service deployment
are not helpful. Especially with regard to containers, error messages are cryp-
tic and don’t help finding the root cause. For example, using /bin/sh shebang
in a shell script, which is not available on Service Fabric on Linux, will result
in only the following error message by the hosting subsystem: “The process/-
container terminated with exit code:134.” Or, if a port is already bound by
a service in nat networking mode, the deployment of another service trying
to bind the same port will fail. The hosting subsystem will indicate the port

7. Comparison of Azure Kubernetes Service and Service Fabric 99

conflict with the vague error description FABRIC_E_INVALID_OPERATION.

Staging phase

Deploying multiple environments in a single cluster is only possible with
several limitations. It is not easily possible to restrict an environment from
accessing services residing in another environment. Furthermore, DNS names
have to be coordinated and must include an environment identifier in order
to differentiate between a service in different environments. Also, as dis-
cussed in Subsection 7.4.2, resource governance must be implemented on
the service level; this introduces a higher susceptibility to errors.

To test the fault tolerance of a release before it is deployed to production,
Service Fabric provides an API for the testability subsystem that allows
to execute scenarios of failing microservices or infrastructure. Examples for
these kind of events in a scenario are ungracefully restarting nodes, or ter-
minating code packages [Mic18c] with the running container. After complet-
ing a scenario test run, a report is generated that can be included in the
deployment pipeline to decide whether the release is ready for production
deployment.

Production phase

Since Service Fabric itself does not provide an API gateway, it therefore
does not enable more complex rollout strategies than its rolling upgrade
procedure. An alternative is to utilize Traefik again to route the incoming
traffic. The labels of a service to register with Traefik can be updated at
runtime via the Service Fabric Client REST API. In order to execute a
blue-green deployment, two versions are deployed. By increasing the value
of the traefik.frontend.priority label on the new service version, it starts
receiving all traffic. To accomplish a canary deployment strategy, Trae-
fik can balance requests between two service versions by specifying the
traefik.backend.group.weight label. The weight of each version defines the
ratio. To gradually increase the weight of the new version, no mechanism
is implemented, instead a manual update via the API is required. For A/B
testing, Traefik allows to apply a regular expression on request headers.
By matching on a cookie or other header values, users can be divided into
different groups [CG18; Con19].

7. Comparison of Azure Kubernetes Service and Service Fabric 100

7.10 Load testing

As the final criteria, performance metrics of all three platforms are com-
pared. For this evaluation, several load tests that simulate a constant num-
ber of parallel users are executed against each platform. These tests run for
a constant time of five minutes each and are staggered in their number of
users.

In order to ensure a high level of comparability between the platforms, the
following measures are taken:

• All orchestration platforms operate in a cluster of three virtual ma-
chines. Each virtual machine is of type Standard_D1_v215, which has
1 vCPU and 3.5 GiB memory. To facilitate a replicable comparison,
auto-scaling of virtual machines is not enabled.

• Although Azure Kubernetes Services and Service Fabric utilize Azure
Disks differently, both use the same Standard HDD Managed Disks
with up to 500 IOPS and up to 60 MB/second per disk16.

• To mitigate the database becoming a possible bottleneck, an oversized
S217 instance with 50 DTUs is provisioned.

• As mentioned in Subsection 7.3.3, current versions of Redis are not
developed for Windows anymore. In order to keep all three platform
implementation as similar as technically possible, every platform in-
tegrates Redis version 3.2, which is the last Windows release, as its
storage for operational data.

Goal of the load tests is to model a realistic load. Since allReady has never
been released to the public, no secondary data is available on how the appli-
cation is used. To approximate real behavior, three personas are modeled,
each representing a different type of user:

• Website visitor: A visitor that uses a browser to navigate through the
allReady application. They view running campaigns related to a dis-
aster and events corresponding to the campaigns. A website user does
not log in and does not visit protected areas. The primarily targeted
microservice is the MVC service, which delegates to the main service.

• Mobile app visitor: This visitor uses the allReady mobile app on their
smartphone. They only view information but do not update it. The app

15https://docs.microsoft.com/azure/virtual-machines/windows/sizes-general#dv2-series
16https://azure.microsoft.com/pricing/details/managed-disks
17https://docs.microsoft.com/azure/sql-database/sql-database-service-tiers-dtu

https://docs.microsoft.com/azure/virtual-machines/windows/sizes-general#dv2-series
https://azure.microsoft.com/pricing/details/managed-disks
https://docs.microsoft.com/azure/sql-database/sql-database-service-tiers-dtu

7. Comparison of Azure Kubernetes Service and Service Fabric 101

Website visitor Mobile app visitor Administrator

Ratio 4 6 1
Rel. distribution 36.36 % 54.55 % 9.09 %

Table 7.1: Workload distribution amongst all personas

sends requests directly to the /api path. These requests are received
via the REST API of the main service, which is the primarily targeted
microservice in this scenario.

• Administrator: The administrator is responsible for updating infor-
mation about emergency aid: organizations, campaigns and events.
Furthermore, their responsibility is to manage other registered users
and grant them necessary permissions. The administrator logs in using
the identity microservice and interacts with the website provided by
the MVC service. Thus, an administrator’s actions target all microser-
vices.

Since in case of a real disaster the workloads generated by each of these
three personas would not be equally distributed in size, a ration is modeled
into the load tests. In order to approximate a realistic distribution, the per-
sonas are first divided into two groups: Visitors that only use the application
to view information during a disaster, and administrators that coordinate
measures to deal with the disaster. Due to the lack of secondary data, the
total workload is split at a ration of 10 to 1 between visitor requests and
administrator requests. To further distinguish between visitor personas, the
visitor workload is split at a ratio of 4 to 6 between website visitors and mo-
bile app visitors. Table 7.1 shows the resulting relative workload distribution
amongst all personas.

For load generation a constant number of virtual users is created, whereas
each virtual user is an object of a persona type. A virtual user executes
the workflow defined by the persona. When a virtual user has finished their
workflow, a new virtual user is created. Each persona has a predefined list of
URLs that are called in random order. An exception are sequential requests
that are required for a certain action, for example the authorization code
flow of OpenID Connect a virtual user executes to log in. A virtual user
always sends one request after another, i.e. during a load test, the number
of parallel requests the platform has to handle does not exceed to the number
of virtual users.

To model a realistic behavior, a virtual user waits for a certain time af-

7. Comparison of Azure Kubernetes Service and Service Fabric 102

ter receiving a response before they execute the next request. This interval
is called think time. A constant think time would result in an oscillating
number of parallel requests on the time axis: all virtual users would simulta-
neously send their first request and after receiving the response they would
wait in parallel until sending the next request at the same time. Only over
time the oscillation of parallel requests would level off due to different re-
sponse times. To prevent this artificial densification, think time is uniformly
distributed by a random number generator within an interval of 0 to 20
seconds.

Load tests are staggered in their number of parallel virtual users and are
executed for a constant time of five minutes each. For test runs are executed
against each platform, simulating the following numbers of parallel users:
250, 500, 1000 and 2000. These tests are expected to produce error condi-
tions. At the start of each test, the orchestration platform is immediately
impacted by the high load as all virtual users start sending requests. For an
application like allReady, such impacts are common because it is designed
to provide instant help and information in case of a disaster. In a scenario
where a disaster strikes without prior warning, the population is alerted by
civil protection alarm. As a result, people instantaneously access allReady
upon hearing the sirens.

7.10.1 Response time

From a user perspective, the most important metric is the time it takes to
complete a request. This metric is called response time in the sense of time
to last byte; in other words, the time it takes from sending a request until the
user receives the last byte of the response. Figure 7.4 displays the comparison
of the response times as a box plot. For the response time, a distinction is
made between successful responses and total responses, which also include
errors. Each chart compares the platforms Azure Kubernetes Service (AKS),
Service Fabric on Linux (SFL) and Service Fabric on Windows (SFW) with
regard to the predefined number of virtual users.

Under the load of 250 virtual users (Figure 7.4a), all three platforms respond
within a reasonable time. AKS and SFL show similar results but SFW per-
forms best. Under a higher load at 500 and 1000 virtual users (Figures 7.4b
and 7.4c respectively), the response times of AKS and SFL increase signif-
icantly. Only SFW achieves a median response time under 50 ms at 1000
virtual users. Although AKS and SFL show a varying response time at 1000
virtual users, they still respond to 50 percent of the requests within a tol-
erable amount of time. As displayed in Figure 7.4c, only SFW is able to

7. Comparison of Azure Kubernetes Service and Service Fabric 103

SFWSFLAKS
SuccessTotalSuccessTotalSuccessTotal

200

150

100

50

0

27

5861

26

58
66

Virtual users = 250

El
ap

se
d

tim
e

[m
s]

(a)
SFWSFLAKS

SuccessTotalSuccessTotalSuccessTotal

600

500

400

300

200

100

0
28

74
122

28
72

124

Virtual users = 500

El
ap

se
d

tim
e

[m
s]

(b)

SFWSFLAKS
SuccessTotalSuccessTotalSuccessTotal

16000

14000

12000

10000

8000

6000

4000

2000

0 42307193 41211273

Virtual users = 1000

El
ap

se
d

tim
e

[m
s]

(c)
SFWSFLAKS

SuccessTotalSuccessTotalSuccessTotal

90000

80000

70000

60000

50000

40000

30000

20000

10000

0 257285
8967

255276

11305

Virtual users = 2000
El

ap
se

d
tim

e
[m

s]

(d)

Figure 7.4: Box plots of response time distribution; the median value is dis-
played alongside each box; outliers are omitted to reduce noise

serve requests from 2000 virtual users in an appropriate time. Remarkable
is the performance of SFL at 2000 virtual users: although a great portion
of the total requests take several seconds to be returned, the successfully
completed responses are processed within a tolerable time frame.

7.10.2 Throughput of successful responses

Throughput is the amount of data sent by the virtual user to the application
and is measured in KiB/s. A main goal of allReady is to provide as many
users with information about an emergency as possible. Therefore, for the
platform comparison, only successfully completed requests are taken into
account, otherwise failing responses would skew the result.

Comparing the throughput of each orchestration platform in Figure 7.5,

7. Comparison of Azure Kubernetes Service and Service Fabric 104

20001000500250

250

200

150

100

50

0

Virtual users

Th
ro

ug
hp

ut
 in

 K
iB

/s

AKS
SFL
SFW

Figure 7.5: The throughput of successful responses

SFW performs best again. Doubling the number of virtual users results in
almost twice the troughput. This is a logical outcome because increasing the
load only has minimal effect on the response time and, as explained in the
following Subsection 7.10.3, does not lead to a higher error rate.

7.10.3 Error rate

Another important factor, especially for applications such as allReady that
need to be reliable in case of an emergency, is how many requests can be
handled successfully. This factor is expressed by the diametrical opposite in
the form of the error rate. Concerning the relative error rates in Figure 7.6,
AKS and SFL struggle to respond correctly when under high load. Only
SFW is able to keep the error rate under one percent.

By considering only the error rates, AKS seems to perform worse than SFL.
In Figure 7.7, this error rate is set in contrast to the number of successful
requests. Especially for 500 and 1000 parallel virtual users (Figures 7.7b
and 7.7c respectively) AKS returns more successful responses in absolute
numbers than SFL, although it has a higher error rate. For the allReady
application, this means that AKS provides more users with important in-
formation in a real disaster situation. In general, it can be observed that
under low load, SFL performs better than AKS (Figure 7.7a) but at the
highest load, AKS achieves a better error rate and returns more successful
responses (Figure 7.7d). Again, neither AKS nor SFL are able to match the

7. Comparison of Azure Kubernetes Service and Service Fabric 105

20001000500250

50 %

40 %

30 %

Virtual users

Er
ro

r r
at

e

AKS
SFL
SFW

20 %

10 %

0 %

Figure 7.6: The relative error rate

performance of SFW with regard to error rates. While handling requests
of 2000 virtual users, SFW operates with a minimal error rate of 0.4 %,
whereas AKS and SFL have error rates of 35.9 % and 48.5 % respectively.

7. Comparison of Azure Kubernetes Service and Service Fabric 106

SFWSFLAKS

12000

10000

8000

6000

4000

2000

0

Su
cc

es
sfu

l r
es

po
ns

es

Virtual users = 250

50 %

40 %

30 %

20 %

10 %

0 %

60 %

Er
ro

r r
at

e

x

x

x
(a)

SFWSFLAKS

20000

15000

10000

5000

0

Su
cc

es
sfu

l r
es

po
ns

e

Virtual users = 500

40 %

30 %

20 %

10 %

0 %

Er
ro

r r
at

e

x x x
(b)

SFWSFLAKS

40000

30000

20000

10000

0

Su
cc

es
sfu

l r
es

po
ns

es

Virtual users = 1000

40 %

30 %

20 %

10 %

0 %

Er
ro

r r
at

e

x

x

x
(c)

SFWSFLAKS

80000

70000

60000

50000

40000

30000

20000

10000

0

Su
cc

es
sfu

l r
es

po
ns

es

Virtual users = 2000

50 %

40 %

30 %

20 %

10 %

0 %

60 %

Er
ro

r r
at

e

70 %

x
x

x
(d)

Figure 7.7: The bar charts represent the absolute numbers of successful re-
sponses; the relative error rate is indicated by the X

Chapter 8

Closing Remarks

Introducing microservices as an architecture pattern brings many benefits
but also has a significant impact on the complexity of the application. This
complexity is shifted from the implementation level of business logic to the
higher level of application architecture. An application architecture that is
built adhering to the model of eventual consistency can greatly improve
the performance of distributed systems but requires every microservice to
handle various faults of other systems or services.

It is a fallacy that an application can be implemented using totally decou-
pled and independent microservices. Most business processes involve multi-
ple microservices that have to work together. Due to the decoupling they
use asynchronous communication patterns that might lead to inconsisten-
cies in the overall application state. This requires non-trivial coordination
between microservices to compensate the inconsistencies. With regard to
the transformed allReady architecture, several boundaries emerge that re-
quire the resulting microservices to coordinate. In order to handle failures
during communication, many mitigation patterns are implemented. The gen-
eral concept of these implemented patterns is mostly the same for different
microservices but differs in their details. This leads to large portions of boil-
erplate code implemented in every microservice.

Despite the enormous increase in complexity, the microservices pattern en-
ables several valuable benefits. The most important one is scalability. De-
pending on the workload, infrastructure can be provisioned to meet current
demands. When the demand drops back to the initial state, infrastructure
can be released again. In order to fully profit from this dynamic infrastruc-
ture provisioning, applications are deployed on infrastructure hosted by a

107

8. Closing Remarks 108

cloud provider. The cloud provider offers mechanisms to dynamically cre-
ate the required infrastructure resources, and only charges for allocated re-
sources. In particular, applications with large fluctuations in workload, such
as allReady, can keep the basic costs down by only provisioning minimal
infrastructure required to handle average traffic. In case of rapidly increas-
ing traffic, more infrastructure can be provisioned automatically to meet the
resources requirements.

An orchestration platform represents the middle layer between application
and cloud infrastructure. It monitors the cluster state and instructs the
cloud provider to make changes to the underlying infrastructure. The com-
pared container orchestration platforms show rather large difference in their
range of functions. Service Fabric lacks essential functionalities, which im-
pedes parallel development of microservices by multiple teams. Since Service
Fabric supports running non-containerized executables alongside containers,
it is very well suited for lift-and-shift scenarios where it is not possible to
containerize every part of an application. Contrary, AKS does only allow
services running inside a container. The availability of Reliable Collections
within Windows containers is a unique feature that can provide an alter-
native to the cumbersome disk provisioning. However, this means a vendor
lock-in, and therefore couples the application to the orchestration platform.
Moreover, Service Fabric on Windows brings great benefits regarding per-
formance and high availability.

Although there are fields of applications that certainly profit from the char-
acteristics of Service Fabric, the ecosystem of Kubernetes makes it superior
in most aspects. For greenfield projects or applications that can be con-
tainerized without effort, Kubernetes is the preferred choice. Moreover, a
microservices architecture must also be implemented within the organiza-
tion of a company. Kubernetes provides the tools to separate independent
development teams and minimize coordination overhead.

References

[AB] Brock Allen and Dominick Baier. Deployment. url: http://doc
s.identityserver.io/en/latest/topics/deployment.html#operational
-data (visited on 2019-11-18) (cit. on p. 52).

[BHJ16] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. “Mi-
croservices Architecture Enables DevOps: Migration to a Cloud-
Native Architecture”. IEEE Software 33.3 (2016), pp. 42–52 (cit.
on p. 28).

[Bre00] Eric A. Brewer. “Towards Robust Distributed Systems (Ab-
stract)”. In: Proceedings of the Nineteenth Annual ACM Sympo-
sium on Principles of Distributed Computing. PODC ’00. Port-
land, Oregon, USA: ACM, 2000, pp. 7–. url: http://doi.acm.or
g/10.1145/343477.343502 (cit. on p. 24).

[Bro19] Taylor Brown. Announcing the preview of Windows Server con-
tainers support in Azure Kubernetes Service. May 17, 2019. url:
https://azure.microsoft.com/en-us/blog/announcing-the-preview
-of-windows-server-containers-support-in-azure-kubernetes-servic
e (visited on 2019-11-18) (cit. on p. 50).

[Bur19] Brendan Burns. Azure Kubernetes Service (AKS) GA – New
regions, more features, increased productivity. June 13, 2019.
url: https://azure.microsoft.com/en-us/blog/azure-kubernetes-s
ervice-aks-ga-new-regions-new-features-new-productivity (visited
on 2019-11-22) (cit. on p. 56).

[CG18] Joni Collinge and Lawrence Gripper. Intelligent routing on Ser-
vice Fabric with Træfik. Microsoft. April 5, 2018. url: https://t
echcommunity.microsoft.com/t5/Azure-Service-Fabric/Intelligent
-routing-on-Service-Fabric-with-Tr-230-fik/ba-p/791290 (visited
on 2019-12-10) (cit. on pp. 91, 99).

[Cit+15] Jürgen Cito et al. “The making of cloud applications: an empir-
ical study on software development for the cloud”. Proceedings

109

http://docs.identityserver.io/en/latest/topics/deployment.html#operational-data
http://docs.identityserver.io/en/latest/topics/deployment.html#operational-data
http://docs.identityserver.io/en/latest/topics/deployment.html#operational-data
http://doi.acm.org/10.1145/343477.343502
http://doi.acm.org/10.1145/343477.343502
https://azure.microsoft.com/en-us/blog/announcing-the-preview-of-windows-server-containers-support-in-azure-kubernetes-service
https://azure.microsoft.com/en-us/blog/announcing-the-preview-of-windows-server-containers-support-in-azure-kubernetes-service
https://azure.microsoft.com/en-us/blog/announcing-the-preview-of-windows-server-containers-support-in-azure-kubernetes-service
https://azure.microsoft.com/en-us/blog/azure-kubernetes-service-aks-ga-new-regions-new-features-new-productivity
https://azure.microsoft.com/en-us/blog/azure-kubernetes-service-aks-ga-new-regions-new-features-new-productivity
https://techcommunity.microsoft.com/t5/Azure-Service-Fabric/Intelligent-routing-on-Service-Fabric-with-Tr-230-fik/ba-p/791290
https://techcommunity.microsoft.com/t5/Azure-Service-Fabric/Intelligent-routing-on-Service-Fabric-with-Tr-230-fik/ba-p/791290
https://techcommunity.microsoft.com/t5/Azure-Service-Fabric/Intelligent-routing-on-Service-Fabric-with-Tr-230-fik/ba-p/791290

References 110

of the 2015 10th Joint Meeting on Foundations of Software En-
gineering - ESEC/FSE 2015 (2015), pp. 393–403. url: http://d
l.acm.org/citation.cfm?doid=2786805.2786826 (cit. on p. 1).

[Cle14] Toby Clemson. Testing Strategies in a Microservice Architec-
ture. November 18, 2014. url: https://martinfowler.com/articles
/microservice-testing (visited on 2018-05-01) (cit. on p. 30).

[Con] Containous. Clustering / High Availability (beta). url: https://d
ocs.traefik. io/v1.7/user- guide/cluster (visited on 2019-12-10)
(cit. on p. 94).

[Con19] Containous. Basics - Traefik. March 15, 2019. url: https://doc
s.traefik.io/v1.7/basics (visited on 2019-12-04) (cit. on pp. 79,
99).

[Con68] Melvin E. Conway. “How do committees invent”. Datamation
14.4 (1968), pp. 28–31. url: http://www.melconway.com/Home
/pdf/committees.pdf (cit. on p. 27).

[Din18] Sandeep Dinesh. Kubernetes best practices: Setting up health
checks with readiness and liveness probes. Google. May 4, 2018.
url: https://cloud.google.com/blog/products/gcp/kubernetes-be
st-practices-setting-up-health-checks-with-readiness-and-liveness
-probes (visited on 2019-12-03) (cit. on p. 77).

[Doca] Docker. Deploy on Kubernetes. url: https://docs.docker.com/d
ocker- for-windows/kubernetes (visited on 2019-12-13) (cit. on
p. 96).

[Docb] Docker. Docker runtime execution options. url: https://docs.do
cker.com/engine/reference/commandline/dockerd/#docker-runti
me-execution-options (visited on 2019-12-06) (cit. on p. 83).

[Docc] Docker. Dockerfile reference. url: https://docs.docker.com/engi
ne/reference/builder (visited on 2019-12-05) (cit. on p. 80).

[Docd] Docker. Install Docker Desktop on Windows. url: https://docs
.docker.com/docker-for-windows/install (visited on 2019-12-13)
(cit. on p. 96).

[Doc18] Docker. Docker for Azure persistent data volumes. March 13,
2018. url: https://docs.docker.com/docker-for-azure/persistent
-data-volumes (visited on 2019-12-01) (cit. on p. 72).

[Dra+17] Nicola Dragoni et al. “Microservices: Yesterday, Today, and To-
morrow”. In: Present and Ulterior Software Engineering. Ed. by
Manuel Mazzara and Bertrand Meyer. Springer International
Publishing, 2017, pp. 195–216. url: https://doi.org/10.1007/97
8-3-319-67425-4_12 (cit. on pp. 10, 11).

http://dl.acm.org/citation.cfm?doid=2786805.2786826
http://dl.acm.org/citation.cfm?doid=2786805.2786826
https://martinfowler.com/articles/microservice-testing
https://martinfowler.com/articles/microservice-testing
https://docs.traefik.io/v1.7/user-guide/cluster
https://docs.traefik.io/v1.7/user-guide/cluster
https://docs.traefik.io/v1.7/basics
https://docs.traefik.io/v1.7/basics
http://www.melconway.com/Home/pdf/committees.pdf
http://www.melconway.com/Home/pdf/committees.pdf
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://docs.docker.com/docker-for-windows/kubernetes
https://docs.docker.com/docker-for-windows/kubernetes
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/builder
https://docs.docker.com/engine/reference/builder
https://docs.docker.com/docker-for-windows/install
https://docs.docker.com/docker-for-windows/install
https://docs.docker.com/docker-for-azure/persistent-data-volumes
https://docs.docker.com/docker-for-azure/persistent-data-volumes
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12

References 111

[Etc19] etcd Development and Communities. etcd version 3.4.0. Au-
gust 30, 2019. url: https://etcd.io/docs (visited on 2019-11-21)
(cit. on p. 55).

[Eva03] Eric Evans. Domain-Driven Design: Tacking Complexity In the
Heart of Software. Addison-Wesley, 2003 (cit. on pp. 14, 15).

[Fowa] Martin Fowler. Microservices and the First Law of Distributed
Objects. url: https://martinfowler.com/articles/distributed-obje
cts-microservices.html (visited on 2018-04-13) (cit. on p. 13).

[Fowb] Martin Fowler. Microservices Resource Guide. url: https://m
artinfowler.com/microservices/ (visited on 2018-01-07) (cit. on
p. 12).

[Fow11] Martin Fowler. TolerantReader. May 9, 2011. url: https://mar
tinfowler.com/bliki/TolerantReader.html (visited on 2018-04-17)
(cit. on p. 23).

[Git] GitHub, Inc. Commits · microsoft/service-fabric. url: https
://github.com/microsoft/service-fabric/commits/master (visited
on 2019-11-24) (cit. on p. 58).

[GT17] J. P. Gouigoux and D. Tamzalit. “From Monolith to Microser-
vices: Lessons Learned on an Industrial Migration to a Web Ori-
ented Architecture”. In: 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW). April 2017, pp. 62–
65 (cit. on pp. 11, 17).

[Hel19] Helm Authors. Helm upgrade - Options. May 16, 2019. url: htt
ps://v2.helm.sh/docs/helm/#options-43 (visited on 2019-12-13)
(cit. on p. 96).

[Hor17] Christian Horsdal. Microservices in . NET Core. Manning, 2017
(cit. on pp. 18, 19).

[Jan19] Deepak Jangid. ServiceFabricVolumeDisk on private cluster ·
Issue #1380 · Azure/service-fabric-issues. October 29, 2019.
url: https://github.com/Azure/service- fabric- issues/issues/1
380#issuecomment-547503036 (visited on 2019-12-05) (cit. on
p. 72).

[JBS15] M. Jones, J. Bradley, and N. Sakimura. JSON Web Token
(JWT). RFC 7519. May 2015. url: https ://tools . ietf .org/ht
ml/rfc7519 (cit. on p. 37).

[Kak+18] Gopal Kakivaya et al. “Service Fabric: A Distributed Platform
for Building Microservices in the Cloud”. Proceedings of the
13th EuroSys Conference, EuroSys 2018 (April 2018), 33:1–
33:15 (cit. on p. 59).

https://etcd.io/docs
https://martinfowler.com/articles/distributed-objects-microservices.html
https://martinfowler.com/articles/distributed-objects-microservices.html
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/bliki/TolerantReader.html
https://martinfowler.com/bliki/TolerantReader.html
https://github.com/microsoft/service-fabric/commits/master
https://github.com/microsoft/service-fabric/commits/master
https://v2.helm.sh/docs/helm/#options-43
https://v2.helm.sh/docs/helm/#options-43
https://github.com/Azure/service-fabric-issues/issues/1380#issuecomment-547503036
https://github.com/Azure/service-fabric-issues/issues/1380#issuecomment-547503036
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

References 112

[Kha17] A Khan. “Key Characteristics of a Container Orchestration
Platform to Enable a Modern Application”. IEEE Cloud Com-
puting 4.5 (September 2017), pp. 42–48 (cit. on pp. 47, 53).

[Kil16] Tom Killalea. “The hidden dividends of microservices”. Com-
munications of the ACM 59.8 (2016), pp. 42–45. url: http://dl
.acm.org/citation.cfm?doid=2975594.2948985 (cit. on p. 28).

[Kub19a] Kubernetes Authors. Assigning Pods to Nodes. November 1,
2019. url: https ://kubernetes . io/docs/concepts/configuration
/assign-pod-node (visited on 2019-11-30) (cit. on p. 70).

[Kub19b] Kubernetes Authors. Building large clusters. June 12, 2019. url:
https ://kubernetes . io/docs/setup/best- practices/cluster - large
(visited on 2019-11-29) (cit. on p. 67).

[Kub19c] Kubernetes Authors. Cluster Networking. December 6, 2019.
url: https://kubernetes . io/docs/concepts/cluster - administrati
on/networking (visited on 2019-12-07) (cit. on p. 84).

[Kub19d] Kubernetes Authors. Concepts Underlying the Cloud Controller
Manager. November 14, 2019. url: https://kubernetes.io/docs
/concepts/architecture/cloud-controller (visited on 2019-11-23)
(cit. on p. 54).

[Kub19e] Kubernetes Authors. Configure a Security Context for a Pod or
Container. September 19, 2019. url: https://kubernetes.io/do
cs/tasks/configure- pod- container/security - context (visited on
2019-12-05) (cit. on p. 81).

[Kub19f] Kubernetes Authors. Deployments. November 22, 2019. url: h
ttps://kubernetes.io/docs/concepts/workloads/controllers/deploy
ment (visited on 2019-11-23) (cit. on pp. 57, 77).

[Kub19g] Kubernetes Authors. Horizontal Pod Autoscaler. November 26,
2019. url: https://kubernetes.io/docs/tasks/run-application/hori
zontal-pod-autoscale (visited on 2019-11-30) (cit. on p. 68).

[Kub19h] Kubernetes Authors. Ingress. October 18, 2019. url: https://k
ubernetes.io/docs/concepts/services-networking/ingress (visited
on 2019-12-08) (cit. on p. 86).

[Kub19i] Kubernetes Authors. Ingress Controllers. October 24, 2019.
url: https://kubernetes. io/docs/concepts/services- networking
/ingress-controllers (visited on 2019-12-08) (cit. on p. 87).

[Kub19j] Kubernetes Authors. Kubernetes Components. November 13,
2019. url: https ://kubernetes . io/docs/concepts/overview/co
mponents (visited on 2019-11-23) (cit. on p. 54).

http://dl.acm.org/citation.cfm?doid=2975594.2948985
http://dl.acm.org/citation.cfm?doid=2975594.2948985
https://kubernetes.io/docs/concepts/configuration/assign-pod-node
https://kubernetes.io/docs/concepts/configuration/assign-pod-node
https://kubernetes.io/docs/setup/best-practices/cluster-large
https://kubernetes.io/docs/concepts/cluster-administration/networking
https://kubernetes.io/docs/concepts/cluster-administration/networking
https://kubernetes.io/docs/concepts/architecture/cloud-controller
https://kubernetes.io/docs/concepts/architecture/cloud-controller
https://kubernetes.io/docs/tasks/configure-pod-container/security-context
https://kubernetes.io/docs/tasks/configure-pod-container/security-context
https://kubernetes.io/docs/concepts/workloads/controllers/deployment
https://kubernetes.io/docs/concepts/workloads/controllers/deployment
https://kubernetes.io/docs/concepts/workloads/controllers/deployment
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/concepts/services-networking/ingress
https://kubernetes.io/docs/concepts/services-networking/ingress
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.io/docs/concepts/overview/components
https://kubernetes.io/docs/concepts/overview/components

References 113

[Kub19k] Kubernetes Authors. Managing Compute Resources for Con-
tainers. November 18, 2019. url: https ://kubernetes . io/docs
/concepts/configuration/manage- compute- resources - container
(visited on 2019-11-30) (cit. on p. 67).

[Kub19l] Kubernetes Authors. Persistent Volumes. November 29, 2019.
url: https://kubernetes.io/docs/concepts/storage/persistent-vol
umes (visited on 2019-11-30) (cit. on p. 69).

[Kub19m] Kubernetes Authors. Pod Lifecycle. November 5, 2019. url: ht
tps://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle
(visited on 2019-11-30) (cit. on p. 76).

[Kub19n] Kubernetes Authors. Pod Overview. October 23, 2019. url: htt
ps://kubernetes.io/docs/concepts/workloads/pods/pod-overview
(visited on 2019-11-23) (cit. on p. 56).

[Kub19o] Kubernetes Authors. Pod Security Policies. September 13, 2019.
url: https://kubernetes.io/docs/concepts/policy/pod-security-po
licy (visited on 2019-12-05) (cit. on p. 81).

[Kub19p] Kubernetes Authors. Secrets. November 12, 2019. url: https
://kubernetes.io/docs/concepts/configuration/secret (visited on
2019-12-05) (cit. on p. 81).

[Kub19q] Kubernetes Authors. Service. November 12, 2019. url: https://k
ubernetes.io/docs/concepts/services-networking/service (visited
on 2019-11-23) (cit. on pp. 55, 57).

[Kub19r] Kubernetes Authors. Windows - Prerequisites. September 19,
2019. url: https://minikube.sigs.k8s.io/docs/start/windows/#pr
erequisites (visited on 2019-12-13) (cit. on p. 96).

[Lan16] Rich Lander. Announcing .NET Core 1.0. June 27, 2016. url:
https://blogs.msdn.microsoft.com/dotnet/2016/06/27/announcin
g-net-core-1-0 (visited on 2018-03-15) (cit. on p. 5).

[LF14] James Lewis and Martin Fowler. Microservices - a definition of
this new architectural term. 2014. url: https://martinfowler .c
om/articles/microservices.html (visited on 2018-01-07) (cit. on
pp. 9, 13, 15, 17).

[Mar10] Robert C. Martin. “The Single Responsibility Principle”. In: 97
Things Every Programmer Should Know. 1st ed. O’Reilly, 2010,
pp. 152–153 (cit. on p. 14).

[McA+] Jimmy McArthur et al. 2018 OpenStack User Survey Report.
url: https://www.openstack.org/user-survey/2018-user-survey-r
eport (visited on 2019-11-21) (cit. on p. 54).

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container
https://kubernetes.io/docs/concepts/storage/persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview
https://kubernetes.io/docs/concepts/policy/pod-security-policy
https://kubernetes.io/docs/concepts/policy/pod-security-policy
https://kubernetes.io/docs/concepts/configuration/secret
https://kubernetes.io/docs/concepts/configuration/secret
https://kubernetes.io/docs/concepts/services-networking/service
https://kubernetes.io/docs/concepts/services-networking/service
https://minikube.sigs.k8s.io/docs/start/windows/#prerequisites
https://minikube.sigs.k8s.io/docs/start/windows/#prerequisites
https://blogs.msdn.microsoft.com/dotnet/2016/06/27/announcing-net-core-1-0
https://blogs.msdn.microsoft.com/dotnet/2016/06/27/announcing-net-core-1-0
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://www.openstack.org/user-survey/2018-user-survey-report
https://www.openstack.org/user-survey/2018-user-survey-report

References 114

[McK19] Micah McKittrick. Reliable Collections within Docker container
· Issue #41667 · MicrosoftDocs/azure-docs. November 18,
2019. url: https : //github . com/MicrosoftDocs/azure - docs/ is
sues/41667#issuecomment- 555107360 (visited on 2019-11-28)
(cit. on p. 64).

[Mica] Microsoft. API Management pricing. url: https ://azure .micr
osoft .com/en- us/pricing/details/api -management (visited on
2019-12-09) (cit. on p. 90).

[Micb] Microsoft. Choose between ASP.NET and ASP.NET Core. url:
https://docs.microsoft.com/en-us/aspnet/core/choose-aspnet-fra
mework (visited on 2018-03-16) (cit. on p. 7).

[Micc] Microsoft. Container services. url: https://azure.microsoft.co
m/en-us/product-categories/containers (visited on 2019-11-15)
(cit. on p. 49).

[Micd] Microsoft. Get started with the .NET Framework. url: https://d
ocs.microsoft.com/en-us/dotnet/framework/get- started/index
(visited on 2018-03-15) (cit. on p. 5).

[Mice] Microsoft. Kestrel web server implementation in ASP.NET
Core. url: https://docs.microsoft.com/en-us/aspnet/core/fu
ndamentals/servers/kestrel?tabs=aspnetcore2x (visited on 2018-
03-16) (cit. on p. 7).

[Micf] Microsoft. .NET Core application deployment. url: https://doc
s.microsoft.com/en-us/dotnet/core/deploying/index (visited on
2018-03-15) (cit. on p. 7).

[Micg] Microsoft. .NET Core Guide. url: https://docs.microsoft.com/e
n-us/dotnet/core (visited on 2018-03-15) (cit. on p. 6).

[Mich] Microsoft. .NET Framework system requirements. url: https://d
ocs.microsoft.com/en-us/dotnet/framework/get-started/system
-requirements (visited on 2018-03-15) (cit. on p. 6).

[Mici] Microsoft. .NET Standard FAQ. url: https://github.com/dotn
et/standard/blob/master/docs/faq.md (visited on 2018-03-16)
(cit. on p. 8).

[Micj] Microsoft. NuGet Gallery | Packages matching
Tags:"SFNuGet". url: https : // www . nuget . org / packages
?q=Tags%3A%22SFNuGet%22 (visited on 2019-12-14) (cit. on
p. 98).

[Mick] Microsoft. Overview of the .NET Framework. url: https://doc
s.microsoft.com/en-us/dotnet/framework/get-started/overview
(visited on 2018-03-15) (cit. on p. 5).

https://github.com/MicrosoftDocs/azure-docs/issues/41667#issuecomment-555107360
https://github.com/MicrosoftDocs/azure-docs/issues/41667#issuecomment-555107360
https://azure.microsoft.com/en-us/pricing/details/api-management
https://azure.microsoft.com/en-us/pricing/details/api-management
https://docs.microsoft.com/en-us/aspnet/core/choose-aspnet-framework
https://docs.microsoft.com/en-us/aspnet/core/choose-aspnet-framework
https://azure.microsoft.com/en-us/product-categories/containers
https://azure.microsoft.com/en-us/product-categories/containers
https://docs.microsoft.com/en-us/dotnet/framework/get-started/index
https://docs.microsoft.com/en-us/dotnet/framework/get-started/index
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/dotnet/core/deploying/index
https://docs.microsoft.com/en-us/dotnet/core/deploying/index
https://docs.microsoft.com/en-us/dotnet/core
https://docs.microsoft.com/en-us/dotnet/core
https://docs.microsoft.com/en-us/dotnet/framework/get-started/system-requirements
https://docs.microsoft.com/en-us/dotnet/framework/get-started/system-requirements
https://docs.microsoft.com/en-us/dotnet/framework/get-started/system-requirements
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://www.nuget.org/packages?q=Tags%3A%22SFNuGet%22
https://www.nuget.org/packages?q=Tags%3A%22SFNuGet%22
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview

References 115

[Micl] Microsoft. ResourceGovernancePolicyType Class. url: https://d
ocs.microsoft.com/en-us/dotnet/api/system.fabric.management.s
ervicemodel.resourcegovernancepolicytype (visited on 2019-12-01)
(cit. on p. 71).

[Mic16] Microsoft. Release 3.2.100 · microsoftarchive/redis. July 1,
2016. url: https://github.com/microsoftarchive/redis/releases
/tag/win-3.2.100 (visited on 2019-11-27) (cit. on p. 64).

[Mic17a] Microsoft. Bulkhead pattern. June 23, 2017. url: https://docs.mi
crosoft.com/en-us/azure/architecture/patterns/bulkhead (visited
on 2018-04-16) (cit. on p. 21).

[Mic17b] Microsoft. Compensating Transaction pattern. June 23, 2017.
url: https://docs.microsoft.com/en-us/azure/architecture/pat
terns/compensating-transaction (visited on 2018-04-18) (cit. on
p. 25).

[Mic17c] Microsoft. Connect and communicate with services in Service
Fabric. November 1, 2017. url: https://docs.microsoft.com/en
-us/azure/service-fabric/service-fabric-connect-and-communicate
-with-services (visited on 2019-12-09) (cit. on p. 89).

[Mic17d] Microsoft. Reverse proxy in Azure Service Fabric. November 3,
2017. url: https://docs.microsoft.com/en-us/azure/service- fa
bric/service-fabric-reverseproxy (visited on 2019-12-09) (cit. on
p. 89).

[Mic17e] Microsoft. Service Fabric architecture. October 12, 2017. url: h
ttps://docs.microsoft.com/en-us/azure/service-fabric/service-fab
ric-architecture (visited on 2019-11-24) (cit. on p. 59).

[Mic17f] Microsoft. Service Fabric programming model overview. Novem-
ber 2, 2017. url: https://docs.microsoft.com/en-us/azure/servic
e-fabric/service-fabric-choose-framework (visited on 2019-11-24)
(cit. on p. 58).

[Mic17g] Microsoft. Service Fabric with Azure API Management
overview. June 22, 2017. url: https://docs.microsoft .com/en
-us/azure/service-fabric/service-fabric-api-management-overview
(visited on 2019-12-09) (cit. on p. 90).

[Mic17h] Microsoft. Service movement cost. August 18, 2017. url: https
://docs.microsoft.com/en-us/azure/service- fabric/service- fabri
c-cluster-resource-manager-movement-cost (visited on 2019-12-
02) (cit. on p. 75).

[Mic17i] Microsoft. Set up a Linux Service Fabric cluster on your Win-
dows developer machine. November 20, 2017. url: https://docs
.microsoft.com/en-us/azure/service-fabric/service-fabric-local-lin
ux-cluster-windows (visited on 2019-12-14) (cit. on p. 98).

https://docs.microsoft.com/en-us/dotnet/api/system.fabric.management.servicemodel.resourcegovernancepolicytype
https://docs.microsoft.com/en-us/dotnet/api/system.fabric.management.servicemodel.resourcegovernancepolicytype
https://docs.microsoft.com/en-us/dotnet/api/system.fabric.management.servicemodel.resourcegovernancepolicytype
https://github.com/microsoftarchive/redis/releases/tag/win-3.2.100
https://github.com/microsoftarchive/redis/releases/tag/win-3.2.100
https://docs.microsoft.com/en-us/azure/architecture/patterns/bulkhead
https://docs.microsoft.com/en-us/azure/architecture/patterns/bulkhead
https://docs.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction
https://docs.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-connect-and-communicate-with-services
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-connect-and-communicate-with-services
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-connect-and-communicate-with-services
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reverseproxy
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reverseproxy
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-api-management-overview
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-api-management-overview
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-movement-cost
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-movement-cost
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-movement-cost
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-local-linux-cluster-windows
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-local-linux-cluster-windows
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-local-linux-cluster-windows

References 116

[Mic18a] Microsoft. Containerize your Service Fabric Reliable Services
and Reliable Actors on Windows. May 23, 2018. url: https://d
ocs.microsoft.com/en-us/azure/service-fabric/service-fabric-servi
ces-inside-containers (visited on 2019-11-28) (cit. on p. 64).

[Mic18b] Microsoft. Differences between Service Fabric on Linux and
Windows. February 23, 2018. url: https : //docs .microsoft . co
m/en-us/azure/service-fabric/service-fabric-linux-windows-differ
ences (visited on 2019-11-27) (cit. on p. 64).

[Mic18c] Microsoft. Induce controlled Chaos in Service Fabric clusters.
February 5, 2018. url: https ://docs .microsoft . com/en- us/a
zure/service- fabric/service- fabric - controlled- chaos (visited on
2019-12-14) (cit. on p. 99).

[Mic18d] Microsoft. Introduction to Auto Scaling. April 17, 2018. url: ht
tps://docs.microsoft.com/en-us/azure/service-fabric/service-fab
ric-cluster-resource-manager-autoscaling (visited on 2019-12-01)
(cit. on p. 71).

[Mic18e] Microsoft. Introduction to Service Fabric health monitoring.
February 28, 2018. url: https://docs.microsoft.com/en- us/a
zure/service-fabric/service-fabric-health-introduction (visited on
2019-12-03) (cit. on p. 78).

[Mic18f] Microsoft. Run a service startup script as a local user or system
account. March 21, 2018. url: https://docs.microsoft.com/en-us
/azure/service-fabric/service-fabric-run-script-at-service-startup
(visited on 2019-12-06) (cit. on p. 82).

[Mic18g] Microsoft. Service Fabric application upgrade. February 23,
2018. url: https://docs.microsoft.com/en-us/azure/service- f
abric/service-fabric-application-upgrade (visited on 2019-12-04)
(cit. on p. 79).

[Mic18h] Microsoft. Service Fabric container networking modes. Febru-
ary 23, 2018. url: https://docs.microsoft.com/en-us/azure/ser
vice-fabric/service-fabric-networking-modes (visited on 2019-12-
07) (cit. on p. 84).

[Mic18i] Microsoft. Use Azure Container Registry as a Helm repository
for your application charts. September 24, 2018. url: https://d
ocs.microsoft.com/en-us/azure/container-registry/container-regis
try-helm-repos (visited on 2019-12-13) (cit. on p. 96).

[Mic18j] Microsoft. What’s SFNuGet? August 31, 2018. url: https://git
hub.com/Azure/SFNuGet (visited on 2019-12-14) (cit. on p. 98).

[Mic19a] Microsoft. Azure keyvault integration with Kubernetes via a Flex
Volume. November 7, 2019. url: https://github.com/Azure/kub
ernetes-keyvault-flexvol (visited on 2019-12-07) (cit. on p. 82).

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-services-inside-containers
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-services-inside-containers
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-services-inside-containers
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-linux-windows-differences
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-linux-windows-differences
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-linux-windows-differences
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-controlled-chaos
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-controlled-chaos
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-autoscaling
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-autoscaling
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-autoscaling
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-health-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-health-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-run-script-at-service-startup
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-run-script-at-service-startup
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-upgrade
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-upgrade
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-networking-modes
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-networking-modes
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-helm-repos
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-helm-repos
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-helm-repos
https://github.com/Azure/SFNuGet
https://github.com/Azure/SFNuGet
https://github.com/Azure/kubernetes-keyvault-flexvol
https://github.com/Azure/kubernetes-keyvault-flexvol

References 117

[Mic19b] Microsoft. Azure subscription and service limits, quotas, and
constraints. November 18, 2019. url: https : // docs .microsoft
.com/en-us/azure/azure- subscription- service- limits (visited on
2019-12-07) (cit. on p. 67).

[Mic19c] Microsoft. Frequently asked questions about Azure Container In-
stances. April 25, 2019. url: https://docs.microsoft.com/en-u
s/azure/container- instances/container- instances-faq (visited on
2019-11-15) (cit. on p. 49).

[Mic19d] Microsoft. How Azure Dev Spaces works and is configured.
March 4, 2019. url: https://docs.microsoft.com/en-us/azure
/dev-spaces/how-dev-spaces-works (visited on 2019-12-13) (cit.
on p. 97).

[Mic19e] Microsoft. KeyVaultReference support for Service Fabric appli-
cations (preview). September 20, 2019. url: https://docs.micros
oft.com/en-us/azure/service-fabric/service-fabric-keyvault-refere
nces (visited on 2019-12-05) (cit. on p. 83).

[Mic19f] Microsoft. Kubernetes core concepts for Azure Kubernetes Ser-
vice (AKS). June 3, 2019. url: https://docs.microsoft.com/en-u
s/azure/aks/concepts-clusters-workloads (visited on 2019-11-23)
(cit. on p. 56).

[Mic19g] Microsoft. Microservices architecture on Azure Service Fabric.
June 13, 2019. url: https://docs.microsoft.com/en-us/azure/a
rchitecture/reference- architectures/microservices/service- fabric
#choose-an-application-to-service-packaging-model (visited on
2019-12-18) (cit. on p. 62).

[Mic19h] Microsoft. Prepare your development environment on Windows.
November 18, 2019. url: https://docs.microsoft.com/en-us/azu
re/service-fabric/service-fabric-get-started (visited on 2019-12-
14) (cit. on p. 98).

[Mic19i] Microsoft. Preview - Secure your cluster using pod security poli-
cies in Azure Kubernetes Service (AKS). April 17, 2019. url: h
ttps://docs.microsoft.com/en-us/azure/aks/use-pod-security-poli
cies (visited on 2019-12-05) (cit. on p. 81).

[Mic19j] Microsoft. Scaling in Service Fabric. August 26, 2019. url: htt
ps://docs.microsoft.com/en-us/azure/service-fabric/service-fabri
c-concepts-scalability (visited on 2019-12-01) (cit. on p. 71).

[Mic19k] Microsoft. Secrets. July 25, 2019. url: https://docs.microsoft.co
m/en-us/azure/service-fabric/service-fabric-application-secret-st
ore (visited on 2019-12-05) (cit. on p. 83).

https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-faq
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-faq
https://docs.microsoft.com/en-us/azure/dev-spaces/how-dev-spaces-works
https://docs.microsoft.com/en-us/azure/dev-spaces/how-dev-spaces-works
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-keyvault-references
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-keyvault-references
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-keyvault-references
https://docs.microsoft.com/en-us/azure/aks/concepts-clusters-workloads
https://docs.microsoft.com/en-us/azure/aks/concepts-clusters-workloads
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/microservices/service-fabric#choose-an-application-to-service-packaging-model
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/microservices/service-fabric#choose-an-application-to-service-packaging-model
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/microservices/service-fabric#choose-an-application-to-service-packaging-model
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-get-started
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-get-started
https://docs.microsoft.com/en-us/azure/aks/use-pod-security-policies
https://docs.microsoft.com/en-us/azure/aks/use-pod-security-policies
https://docs.microsoft.com/en-us/azure/aks/use-pod-security-policies
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-concepts-scalability
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-concepts-scalability
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-concepts-scalability
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-secret-store
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-secret-store
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-secret-store

References 118

[Mic19l] Microsoft. Tutorial: Create a multi-container (preview) app in
Web App for Containers. April 29, 2019. url: https://docs.micr
osoft.com/en-us/azure/app-service/containers/tutorial-multi-con
tainer-app (visited on 2019-11-15) (cit. on p. 49).

[Mic19m] Microsoft. What is Azure Application Gateway? November 23,
2019. url: https://docs.microsoft.com/en-us/azure/application
-gateway/overview (visited on 2019-12-09) (cit. on p. 90).

[New15] Sam Newman. Building Microservices. O’Reilly, 2015 (cit. on
pp. 12–14, 16, 17, 21, 22, 25–27, 29, 42).

[Nyg07] Michael Nygard. Release It!: Design and Deploy Production-
Ready Software. Pragmatic Bookshelf, 2007 (cit. on pp. 20, 21).

[Pos80] Jon Postel. Transmission Control Protocol. RFC 761. January
1980. url: https://tools.ietf.org/html/rfc761 (cit. on p. 23).

[Pre] Tom Preston-Werner. Semantic Versioning 2.0.0. url: https://s
emver.org/ (visited on 2018-04-17) (cit. on p. 22).

[Ram17] Subramanian Ramaswamy. Orchestrating one million contain-
ers with Azure Service Fabric. Youtube. September 27, 2017.
url: https://www.youtube.com/watch?v=OjhOZkql4uE (visited
on 2019-11-30) (cit. on p. 70).

[Rica] Chris Richardson. Pattern: API Gateway / Backends for Fron-
tends. url: https://microservices. io/patterns/apigateway.html
(visited on 2019-12-18) (cit. on pp. 23, 24).

[Ricb] Chris Richardson. Pattern: Monolithic Architecture. url: http
://microservices.io/patterns/monolithic.html (visited on 2018-03-
17) (cit. on pp. 10, 11).

[Ric18] Chris Richardson. Microservices Patterns: With examples in
Java. MEAP Edition. unpublished draft. Manning, 2018. url:
https://www.manning.com/books/microservices-patterns (cit. on
p. 11).

[Rob06] Ian Robinson. Consumer-Driven Contracts: A Service Evolution
Pattern. June 12, 2006. url: https://martinfowler.com/articles
/consumerDrivenContracts.html (visited on 2018-04-17) (cit. on
p. 23).

[SBJ14] N. Sakimura, J. Bradley, and M. Jones. OpenID Connect Core
1.0 incorporating errata set 1. Tech. rep. November 2014. url:
https://openid.net/specs/openid-connect-core-1_0.html (cit. on
p. 36).

https://docs.microsoft.com/en-us/azure/app-service/containers/tutorial-multi-container-app
https://docs.microsoft.com/en-us/azure/app-service/containers/tutorial-multi-container-app
https://docs.microsoft.com/en-us/azure/app-service/containers/tutorial-multi-container-app
https://docs.microsoft.com/en-us/azure/application-gateway/overview
https://docs.microsoft.com/en-us/azure/application-gateway/overview
https://tools.ietf.org/html/rfc761
https://semver.org/
https://semver.org/
https://www.youtube.com/watch?v=OjhOZkql4uE
https://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/monolithic.html
http://microservices.io/patterns/monolithic.html
https://www.manning.com/books/microservices-patterns
https://martinfowler.com/articles/consumerDrivenContracts.html
https://martinfowler.com/articles/consumerDrivenContracts.html
https://openid.net/specs/openid-connect-core-1_0.html

References 119

[Sen19] Athinanthny Senthil. Service Fabric 7.0 Release. Microsoft.
November 18, 2019. url: https ://techcommunity .microsoft .co
m/t5/Azure-Service-Fabric/Service-Fabric-7-0-Release/ba-p/101
5482 (visited on 2019-12-05) (cit. on p. 83).

[Ser18] Service Fabric Team. Service Fabric is going open source.
March 14, 2018. url: https://techcommunity.microsoft.com/t
5/Azure-Service-Fabric/Service-Fabric- is-going-open-source/ba
-p/791251 (visited on 2019-11-24) (cit. on p. 58).

[Sti15] Matt Stine. Migrating to Cloud-Native Application Architec-
tures. 1997. O’Reilly, 2015. url: http://www.oreilly .com/pro
gramming/free/migrating-cloud-native-application-architectures
.csp?download=true (cit. on p. 24).

[Sys19] Sysdig, Inc. 2019 Container Usage Report. 2019. url: https://sy
sdig.com/resources/papers/2019-container-usage-report/ (cit. on
pp. 46, 54).

[Tho] ThoughtWorks. Inverse Conway Maneuver. url: https://www
.thoughtworks.com/radar/techniques/inverse-conway-maneuver
(visited on 2018-05-09) (cit. on p. 28).

[Tom18] Daniel Tomcej. Allow Traefik to function in HA with Flatfile ·
Issue #3594 · containous/traefik. July 11, 2018. url: https://g
ithub.com/containous/traefik/issues/3594#issuecomment-40421
7737 (visited on 2019-12-10) (cit. on p. 95).

[TWR17] Cesar de la Torre, Bill Wagner, and Mike Rousos. .NET Mi-
croservices: Architecture for Containerized .NET Applications.
2nd ed. Microsoft Developer Division, .NET and Visual Studio
product teams, 2017. url: https://aka.ms/microservicesebook
(cit. on pp. 17, 18).

[Vau15] Steven J. Vaughan-Nichols. Google releases Kubernetes 1.0:
Container management will never be the same. July 21, 2015.
url: https://www.zdnet.com/article/google-releases-kubernetes
-1-0 (visited on 2019-11-21) (cit. on p. 54).

[Vog09] Werner Vogels. “Eventually Consistent”. Commun. ACM 52.1
(January 2009), pp. 40–44. url: http://doi.acm.org/10.1145/14
35417.1435432 (cit. on p. 24).

[Vog16] Werner Vogels. 10 Lessons from 10 Years of Amazon Web Ser-
vices. March 11, 2016. url: https://www.allthingsdistributed.co
m/2016/03/10- lessons- from-10-years-of -aws.html (visited on
2018-04-16) (cit. on p. 19).

https://techcommunity.microsoft.com/t5/Azure-Service-Fabric/Service-Fabric-7-0-Release/ba-p/1015482
https://techcommunity.microsoft.com/t5/Azure-Service-Fabric/Service-Fabric-7-0-Release/ba-p/1015482
https://techcommunity.microsoft.com/t5/Azure-Service-Fabric/Service-Fabric-7-0-Release/ba-p/1015482
https://techcommunity.microsoft.com/t5/Azure-Service-Fabric/Service-Fabric-is-going-open-source/ba-p/791251
https://techcommunity.microsoft.com/t5/Azure-Service-Fabric/Service-Fabric-is-going-open-source/ba-p/791251
https://techcommunity.microsoft.com/t5/Azure-Service-Fabric/Service-Fabric-is-going-open-source/ba-p/791251
http://www.oreilly.com/programming/free/migrating-cloud-native-application-architectures.csp?download=true
http://www.oreilly.com/programming/free/migrating-cloud-native-application-architectures.csp?download=true
http://www.oreilly.com/programming/free/migrating-cloud-native-application-architectures.csp?download=true
https://sysdig.com/resources/papers/2019-container-usage-report/
https://sysdig.com/resources/papers/2019-container-usage-report/
https://www.thoughtworks.com/radar/techniques/inverse-conway-maneuver
https://www.thoughtworks.com/radar/techniques/inverse-conway-maneuver
https://github.com/containous/traefik/issues/3594#issuecomment-404217737
https://github.com/containous/traefik/issues/3594#issuecomment-404217737
https://github.com/containous/traefik/issues/3594#issuecomment-404217737
https://aka.ms/microservicesebook
https://www.zdnet.com/article/google-releases-kubernetes-1-0
https://www.zdnet.com/article/google-releases-kubernetes-1-0
http://doi.acm.org/10.1145/1435417.1435432
http://doi.acm.org/10.1145/1435417.1435432
https://www.allthingsdistributed.com/2016/03/10-lessons-from-10-years-of-aws.html
https://www.allthingsdistributed.com/2016/03/10-lessons-from-10-years-of-aws.html

References 120

[War82] Walter P Warner. What is a Software Engineering Environment
(SEE). (Desired Characteristics). Tech. rep. ADA124280. De-
fense Technical Information Center, December 1982, p. 20. url:
http://www.dtic.mil/docs/citations/ADA124280 (cit. on p. 11).

[WC03] Laurie Williams and Alistair Cockburn. “Agile Software Devel-
opment: It’s about Feedback and Change”. IEEE Computer So-
ciety (2003), pp. 39–43 (cit. on p. 27).

[Wol16] Eberhard Wolff. Microservices: Flexible Software Architectures.
2016 (cit. on pp. 11, 13–15, 21, 29, 30).

http://www.dtic.mil/docs/citations/ADA124280

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Goal and approach to a solution
	Structure

	I Transformation
	.NET
	.NET Framework
	.NET Core
	.NET Standard

	Monolithic Architecture
	Characteristics
	Shortcomings and reasons for transformation

	Microservices Architecture
	Characteristics and principles
	Modular design
	Loose coupling and high cohesion
	Bounded context

	Data persistence
	Integration and communication
	Types of communication
	Fault tolerance
	Versioning
	Exposing services to external clients

	Eventual Consistency
	Advantages and disadvantages
	Advantages
	Disadvantages

	Splitting a Monolithic Application
	allReady – an open source monolith
	Solution architecture
	An incremental approach for splitting the monolith
	Identity service
	A common API service for all clients
	Migrating the notifications worker service

	Discussion

	II Operations
	Running Containerized Microservices in the Cloud
	Introduction to container orchestration
	Requirements and design decisions
	Requirements on the orchestration level
	Requirements on the application level

	Comparison of Azure Kubernetes Service and Service Fabric
	Criteria
	Azure Kubernetes Service
	Cluster architecture
	Platform model

	Azure Service Fabric
	Cluster architecture
	Platform model
	Differences between Linux and Windows clusters

	Cluster state management and scheduling
	Azure Kubernetes Service
	Service Fabric

	Providing high availability and fault tolerance
	Azure Kubernetes Service
	Service Fabric

	Ensuring security
	Azure Kubernetes Service
	Service Fabric

	Simplifying networking
	Azure Kubernetes Service
	Service Fabric

	Enabling service discovery
	Azure Kubernetes Service
	Service Fabric

	Enabling continuous deployment
	Azure Kubernetes Service
	Service Fabric

	Load testing
	Response time
	Throughput of successful responses
	Error rate

	Closing Remarks
	References

